Este trabalho apresenta um método computacional que classifica as mamografias no padrão de densidade BI-RADS, visando auxiliar a detecção precoce do câncer de mama, seja essa realizada por análise visual ou por auxílio computadorizado. A classificação das mamografias em bancos padronizados objetiva eliminar conflitos entre laudos mamográficos de diferentes profissionais, bem como quanto à conduta médica a ser seguida. Entretanto, o estabelecimento de bancos feito visualmente e principalmente em períodos diferentes dificulta sua uniformização, proporcionando uma classificação muito subjetiva e relativamente grosseira em conseqüência a grande variação entre e inter observadores. O método desenvolvido permitiu classificar as imagens independentemente da subjetividade própria à observação visual de quem organizou o banco ou da técnica de exposição aos raios X utilizada. Os resultados foram superiores a 92% mesmo para bancos de imagens totalmente diferentes. Esses resultados foram obtidos respeitando-se as possíveis diferenças de interpretações de diversas equipes médicas. Além do estabelecimento de banco de mamografias com limiares entre as composições bem quantificadas, com esta ferramenta, tanto os estagiários poderão ser treinados para classificar as imagens no padrão de densidades do BI-RADS, respeitando as particularidades locais, quanto os resultados dos CAD poderão ser comparados. / This thesis presents a computational method that classifies the mammography into the composition of the breast tissue density patterns described in the BI-RADS protocol, intended to help in the early detection of breast cancer, either if this detection happens to be realized by visual analysis or by computerized support. The classification of the mammography in standardized database intends to eliminate issues between mammography awards of distinct professionals and the correct medical conduct to be followed. However, the determination of database only visually, especially in different periods, difficult it\'s to standardize, causing an extremely subjective classification and relatively superficial in consequence of the large inter-and intraobserver variability. The method allows classifying the images independently of the subjective quality of the visual analysis from who organized the database or from the technique of the exposition to X-ray employed. The results were superior of 92% even to database totally distinct. These results were obtained respecting eventual differences of interpretation from several medical groups. Beside the establishment of mammography database with thresholding between the well quantified categories, this methodology will consent to probationers to be trained for classify the images according to the composition of the breast tissue density patterns described in the BI-RADS, respecting its local particularity. Likewise, with this methodology, the results from CAD would be compared.
Identifer | oai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-11112015-152323 |
Date | 30 August 2004 |
Creators | Silvia Cristina Martini Rodrigues |
Contributors | Annie France Frère Slaets, Paulo Mazzoncini de Azevedo Marques, Nelson Delfino d'Ávila Mascarenhas, Clóvis Simão Trad, Agma Juci Machado Traina |
Publisher | Universidade de São Paulo, Engenharia Elétrica, USP, BR |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | English |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis |
Source | reponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0022 seconds