Return to search

Efficient Processing of Corneal Confocal Microscopy Images. Development of a computer system for the pre-processing, feature extraction, classification, enhancement and registration of a sequence of corneal images.

Corneal diseases are one of the major causes of visual impairment and blindness worldwide. Used for diagnoses, a laser confocal microscope provides a sequence of images, at incremental depths, of the various corneal layers and structures. From these, ophthalmologists can extract clinical information on the state of health of a patient’s cornea. However, many factors impede ophthalmologists in forming diagnoses starting with the large number and variable quality of the individual images (blurring, non-uniform illumination within images, variable illumination between images and noise), and there are also difficulties posed for automatic processing caused by eye movements in both lateral and axial directions during the scanning process.
Aiding ophthalmologists working with long sequences of corneal image requires the development of new algorithms which enhance, correctly order and register the corneal images within a sequence. The novel algorithms devised for this purpose and presented in this thesis are divided into four main categories. The first is enhancement to reduce the problems within individual images. The second is automatic image classification to identify which part of the cornea each image belongs to, when they may not be in the correct sequence. The third is automatic reordering of the images to place the images in the right sequence. The fourth is automatic registration of the images with each other. A flexible application called CORNEASYS has been developed and implemented using MATLAB and the C language to provide and run all the algorithms and methods presented in this thesis. CORNEASYS offers users a collection of all the proposed approaches and algorithms in this thesis in one platform package. CORNEASYS also provides a facility to help the research team and Ophthalmologists, who are in discussions to determine future system requirements which meet clinicians’ needs. / The data and image files accompanying this thesis are not available online.

Identiferoai:union.ndltd.org:BRADFORD/oai:bradscholars.brad.ac.uk:10454/6463
Date January 2013
CreatorsElbita, Abdulhakim M.
ContributorsIpson, Stanley S., Qahwaji, Rami S.R., Ghanchi, Faruque
PublisherUniversity of Bradford, Centre for Visual Computing, School of Engineering and Informatics
Source SetsBradford Scholars
LanguageEnglish
Detected LanguageEnglish
TypeThesis, doctoral, PhD
Rights<a rel="license" href="http://creativecommons.org/licenses/by-nc-nd/3.0/"><img alt="Creative Commons License" style="border-width:0" src="http://i.creativecommons.org/l/by-nc-nd/3.0/88x31.png" /></a><br />The University of Bradford theses are licenced under a <a rel="license" href="http://creativecommons.org/licenses/by-nc-nd/3.0/">Creative Commons Licence</a>.

Page generated in 0.0158 seconds