Nous étudions ici l’intérêt des descripteurs locaux pour les images satellites optiques et radar. Ces descripteurs, par leurs invariances et leur représentation compacte, offrent un intérêt pour la comparaison d’images acquises dans des conditions différentes. Facilement applicables aux images optiques, ils offrent des performances limitées sur les images radar, en raison de leur fort bruit multiplicatif. Nous proposons ici un descripteur original pour la comparaison d’images radar. Cet algorithme, appelé SAR-SIFT, repose sur la même structure que l’algorithme SIFT (détection de points-clés et extraction de descripteurs) et offre des performances supérieures pour les images radar. Pour adapter ces étapes au bruit multiplicatif, nous avons développé un opérateur différentiel, le Gradient par Ratio, permettant de calculer une norme et une orientation du gradient robustes à ce type de bruit. Cet opérateur nous a permis de modifier les étapes de l’algorithme SIFT. Nous présentons aussi deux applications pour la télédétection basées sur les descripteurs. En premier, nous estimons une transformation globale entre deux images radar à l’aide de SAR-SIFT. L’estimation est réalisée à l’aide d’un algorithme RANSAC et en utilisant comme points homologues les points-clés mis en correspondance. Enfin nous avons mené une étude prospective sur l’utilisation des descripteurs pour la détection de changements en télédétection. La méthode proposée compare les densités de points-clés mis en correspondance aux densités de points-clés détectés pour mettre en évidence les zones de changement. / We study here the interest of local features for optical and SAR images. These features, because of their invariances and their dense representation, offer a real interest for the comparison of satellite images acquired under different conditions. While it is easy to apply them to optical images, they offer limited performances on SAR images, because of their multiplicative noise. We propose here an original feature for the comparison of SAR images. This algorithm, called SAR-SIFT, relies on the same structure as the SIFT algorithm (detection of keypoints and extraction of features) and offers better performances for SAR images. To adapt these steps to multiplicative noise, we have developed a differential operator, the Gradient by Ratio, allowing to compute a magnitude and an orientation of the gradient robust to this type of noise. This operator allows us to modify the steps of the SIFT algorithm. We present also two applications for remote sensing based on local features. First, we estimate a global transformation between two SAR images with help of SAR-SIFT. The estimation is realized with help of a RANSAC algorithm and by using the matched keypoints as tie points. Finally, we have led a prospective study on the use of local features for change detection in remote sensing. The proposed method consists in comparing the densities of matched keypoints to the densities of detected keypoints, in order to point out changed areas.
Identifer | oai:union.ndltd.org:theses.fr/2014ENST0037 |
Date | 01 July 2014 |
Creators | Dellinger, Flora |
Contributors | Paris, ENST, Tupin, Florence, Gousseau, Yann |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0024 seconds