This master thesis investigates different approaches for integrating prior information into a neural network for segmentation of medical images. In the study, liver and liver tumor segmentation is performed in a cascading fashion. Context channels in the form of previous segmentations are integrated into a segmentation network at multiple positions and network depths using different integration strategies. Comparisons are made with the traditional integration approach where an input image is concatenated with context channels at a network’s input layer. The aim is to analyze if context information is lost in the upper network layers when the traditional approach is used, and if better results can be achieved if prior information is propagated to deeper layers. The intention is to support further improvements in interactive image segmentation where extra input channels are common. The results that are achieved are, however, inconclusive. It is not possible to differentiate the methods from each other based on the quantitative results, and all the methods show the ability to generalize to an unseen object class after training. Compared to the other evaluated methods there are no indications that the traditional concatenation approach is underachieving, and it cannot be declared that meaningful context information is lost in the deeper network layers.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-281418 |
Date | January 2020 |
Creators | Stoor, Joakim |
Publisher | KTH, Skolan för kemi, bioteknologi och hälsa (CBH) |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | TRITA-CBH-GRU ; 2020:237 |
Page generated in 0.0025 seconds