A process for the use of multihypothesis prediction in the reconstruction of images is proposed for use in both compressed-sensing reconstruction as well as single-image super-resolution. Specifically, for compressed-sensing reconstruction of a single still image, multiple predictions for an image block are drawn from spatially surrounding blocks within an initial non-predicted reconstruction. The predictions are used to generate a residual in the domain of the compressed-sensing random projections. This residual being typically more compressible than the original signal leads to improved compressed-sensing reconstruction quality. To appropriately weight the hypothesis predictions, a Tikhonov regularization to an ill-posed least-squares optimization is proposed. An extension of this framework is applied to the compressed-sensing reconstruction of hyperspectral imagery is also studied. Finally, the multihypothesis paradigm is employed for single-image superresolution wherein each patch of a low-resolution image is represented as a linear combination of spatially surrounding hypothesis patches.
Identifer | oai:union.ndltd.org:MSSTATE/oai:scholarsjunction.msstate.edu:td-4225 |
Date | 12 May 2012 |
Creators | Chen, Chen |
Publisher | Scholars Junction |
Source Sets | Mississippi State University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Theses and Dissertations |
Page generated in 0.0118 seconds