Return to search

Applying statistical and syntactic pattern recognition techniques to the detection of fish in digital images

This study is an attempt to simulate aspects of human visual perception by automating the detection of specific types of objects in digital images. The success of the methods attempted here was measured by how well results of experiments corresponded to what a typical human’s assessment of the data might be. The subject of the study was images of live fish taken underwater by digital video or digital still cameras. It is desirable to be able to automate the processing of such data for efficient stock assessment for fisheries management. In this study some well known statistical pattern classification techniques were tested and new syntactical/ structural pattern recognition techniques were developed. For testing of statistical pattern classification, the pixels belonging to fish were separated from the background pixels and the EM algorithm for Gaussian mixture models was used to locate clusters of pixels. The means and the covariance matrices for the components of the model were used to indicate the location, size and shape of the clusters. Because the number of components in the mixture is unknown, the EM algorithm has to be run a number of times with different numbers of components and then the best model chosen using a model selection criterion. The AIC (Akaike Information Criterion) and the MDL (Minimum Description Length) were tested.The MDL was found to estimate the numbers of clusters of pixels more accurately than the AIC, which tended to overestimate cluster numbers. In order to reduce problems caused by initialisation of the EM algorithm (i.e. starting positions of mixtures and number of mixtures), the Dynamic Cluster Finding algorithm (DCF) was developed (based on the Dog-Rabbit strategy). This algorithm can produce an estimate of the locations and numbers of clusters of pixels. The Dog-Rabbit strategy is based on early studies of learning behaviour in neurons. The main difference between Dog-Rabbit and DCF is that DCF is based on a toroidal topology which removes the tendency of cluster locators to migrate to the centre of mass of the data set and miss clusters near the edges of the image. In the second approach to the problem, data was extracted from the image using an edge detector. The edges from a reference object were compared with the edges from a new image to determine if the object occurred in the new image. In order to compare edges, the edge pixels were first assembled into curves using an UpWrite procedure; then the curves were smoothed by fitting parametric cubic polynomials. Finally the curves were converted to arrays of numbers which represented the signed curvature of the curves at regular intervals. Sets of curves from different images can be compared by comparing the arrays of signed curvature values, as well as the relative orientations and locations of the curves. Discrepancy values were calculated to indicate how well curves and sets of curves matched the reference object. The total length of all matched curves was used to indicate what fraction of the reference object was found in the new image. The curve matching procedure gave results which corresponded well with what a human being being might observe.

Identiferoai:union.ndltd.org:ADTP/221037
Date January 2004
CreatorsHill, Evelyn June
PublisherUniversity of Western Australia. School of Mathematics and Statistics, University of Western Australia. School of Electrical, Electronic and Computer Engineering
Source SetsAustraliasian Digital Theses Program
LanguageEnglish
Detected LanguageEnglish
RightsCopyright Evelyn June Hill, http://www.itpo.uwa.edu.au/UWA-Computer-And-Software-Use-Regulations.html

Page generated in 0.0019 seconds