The problems of noise removal, and simultaneous noise removal and deblurring of imagery are common to many areas of science. An approach which allows for the unified treatment of both problems involves modeling imagery as a sample of a random process. Various nonstationary image models are explored in this context. Attention is directed to identifying the model parameters from imagery which has been corrupted by noise and possibly blur, and the use of the model to form an optimal reconstruction of the image. Throughout the work, emphasis is placed on both theoretical development and practical considerations involved in achieving this reconstruction. The results indicate that the use of nonstationary image models offers considerable improvement over traditional techniques.
Identifer | oai:union.ndltd.org:arizona.edu/oai:arizona.openrepository.com:10150/187959 |
Date | January 1985 |
Creators | MORGAN, KEITH PATRICK. |
Contributors | Hunt, Bobby R., Dudley, Donald G., Strickland, Robin R. |
Publisher | The University of Arizona. |
Source Sets | University of Arizona |
Language | English |
Detected Language | English |
Type | text, Dissertation-Reproduction (electronic) |
Rights | Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. |
Page generated in 0.0023 seconds