Return to search

Contribution des données d'imagerie à une approche par traits fonctionnels de l'écologie des copépodes arctiques et subarctiques

Thèse ou mémoire avec insertion d'articles / Les copépodes dominent la biomasse du mésozooplancton des régions arctiques et subarctiques, où lumière, glace et production primaire varient fortement selon les saisons. En transformant le carbone fixé par les microalgues en réserves lipidiques pour survivre l'hiver, les Calanus spp. constituent une source d'énergie cruciale pour les poissons, oiseaux et mammifères marins. Historiquement, les copépodes sont étudiés par un comptage taxonomique après un échantillonnage par filets. Cette thèse propose un autre paradigme en combinant l'utilisation d'outils d'imagerie plus récents et une approche dite « par traits fonctionnels ». Les traits fonctionnels sont des propriétés mesurables à l'échelle individuelle et influençant le succès écologique des organismes (i.e. taille, régime trophique, migration verticale). Ils sont partagés par plusieurs espèces et peuvent être reliés à des fonctionnalités des écosystèmes comme l'export de carbone ou l'énergie disponible pour les réseaux trophiques par exemple. Comme une majorité des traits possèdent une signature morphologique, nous les avons définis sur deux types d'images individuelles du plancton, complémentaires et couramment utilisées : des images in situ de l'Underwater Vision Profiler (UVP) et des images en couleur prises lors d'observations au stéréomicroscope. L'objectif de cette thèse est de comprendre comment les traits fonctionnels des copépodes, identifiés sur des images, peuvent être reliés aux dynamiques environnementales et au fonctionnement des écosystèmes arctiques et subarctiques. Dans le Chapitre 1, nous analysons des images in situ prises par l'UVP au moment de la fonte printanière de la banquise dans l'arctique canadien. Des variables morphologiques sont utilisées pour projeter les images dans un espace statistique, et les axes synthétisent les variations morphologiques en trois traits continus : la taille, l'opacité (qui nous renseigne sur les structures pigmentées), et la complexité du contour (indiquant probablement un taux d'activité par la visibilité des appendices). Cette analyse exploratoire a révélé des traits nouveaux, dont les variations étaient fortement corrélées à la fonte de la banquise et à l'efflorescence des algues. Plusieurs arguments indiquent que les maxima d'opacité des individus peuvent être attribués à la présence d'astaxanthine, un pigment caroténoïde rouge. Dans le Chapitre 2, une revue de la littérature a mis en évidence les conditions écologiques propices à la coloration des copépodes pour divers écosystèmes aquatiques à l'échelle globale. Nous démontrons que la pigmentation rouge peut participer au succès des individus (croissance, survie, reproduction) grâce aux propriétés antioxydantes de l'astaxanthine. Comme la pigmentation semble ajustable à de courtes échelles temporelles et avantageuse dans diverses conditions environnementales (lumière intense, basses températures et couvert de glace, ou grandes profondeurs), nous pensons qu'elle peut être considéré comme un de "couteau-suisse" de protection métabolique. Dans le Chapitre 3, une méthode de déconvolution de la couleur de l'astaxanthine a été utilisée pour produire un indice de rougeur sur des images de copépodes arctiques observés au stéréomicroscope. L'indice a été validé par comparaison avec une quantification chimique des pigments, et peut être utilisé pour des images prises dans diverses conditions grâce à une étape préalable de calibration des canaux de couleur. Cette thèse montre qu'il est possible d'extraire un maximum d'information à partir d'une image de plancton pour dégager des tendances écologiques sur de grands jeux de données, tout en gardant accès à la variabilité interindividuelle. Utiliser les traits définis ici (taille, pression de broutage, taux d'antioxydants), en combinaison avec d'autres outils, pourrait participer à la compréhension du fonctionnement des réseaux trophiques. / Copepods dominate the mesozooplankton biomass of arctic and sub-arctic regions, where light, ice and primary production are highly variable according to the season. By converting carbon fixed by microalgae into lipid reserves for winter survival, Calanus spp. are a crucial source of energy for fish, birds and marine mammals. Historically, copepods have been studied by taxonomic counting after net sampling. This thesis proposes an alternative paradigm by combining the use of more recent imaging tools and functional trait-based approach. Functional traits are properties that are measurable at the individual scale and influence the ecological success of organisms (i.e. size, trophic regime, vertical migration). They are shared by several species and can be related to ecosystem functionalities such as carbon export or energy available for food webs for example. As a majority of them have a morphological signature, we defined them on two types of individual plankton images, complementary and commonly used: in situ images from the Underwater Vision Profiler (UVP) and color images taken during stereomicroscope observations. The objective of this thesis is to understand how functional traits of copepods, identified in images, can be related to environmental dynamics and functioning of arctic and sub-arctic ecosystems. In Chapter 1, we analyze in situ images taken by the UVP at the time of spring melt in the Canadian arctic. Morphological variables are used to project the images into a statistical space, and the axes synthesize morphological variation into three continuous features: size, opacity (which tells us about pigmented structures), and complexity of contour (likely indicating feeding activity through appendage visibility). This exploratory analysis revealed novel traits, having variations strongly correlated with sea ice melt and algal blooms phenology. Several arguments indicate that opacity maxima in individuals can be attributed to the presence of astaxanthin, a red carotenoid pigment. In Chapter 2, a review of the literature highlighted the ecological conditions conducive to copepod coloration for various aquatic ecosystems on a global scale. We demonstrate that red pigmentation can participate in the success of individuals (growth, survival, reproduction) through the antioxidant properties of astaxanthin. Since pigmentation appears to be adjustable on short time scales and advantageous under various environmental conditions (intense light, low temperatures and ice cover, or great depths), we believe it can be considered as a "swiss army knife" of metabolic protection. In Chapter 3, an astaxanthin color deconvolution method was used to produce a redness index on stereomicroscope images of arctic copepods. The index was validated by comparison with a chemical quantification of the pigments, and can be used for images taken under various conditions thanks to a prior calibration step of the color channels. This thesis shows that it is possible to extract a maximum amount of information from a plankton image to identify ecological trends on large datasets, while keeping access to inter-individual variability. Using the traits defined here (size, grazing pressure, antioxidant levels), in combination with other tools, could participate in understanding the functioning of food webs.

Identiferoai:union.ndltd.org:LAVAL/oai:corpus.ulaval.ca:20.500.11794/122827
Date25 March 2024
CreatorsVilgrain, Laure
ContributorsAyata, Sakina-Dorothée, Maps, Frédéric
Source SetsUniversité Laval
LanguageFrench
Detected LanguageFrench
TypeCOAR1_1::Texte::Thèse::Thèse de doctorat
Format1 ressource en ligne (xxviii, 163 pages), application/pdf
CoverageArctique., Canada (Nord), Régions froides.
Rightshttp://purl.org/coar/access_right/c_abf2

Page generated in 0.0018 seconds