Le Sarcome d'Ewing est un cancer pédiatrique rare, principalement dû à l'expression de l'oncogène de jonction EWS-Fli1, et dont les traitements médicamenteux ont peu évolué au cours des dernières décennies. Nous nous intéressons à une nouvelle approche thérapeutique utilisant des siRNA, ciblant spécifiquement l'oncogène EWS-Fli1, et permettant l'inhibition de la croissance tumorale. Durant mon travail de thèse, j'ai utilisé des nanocristaux de diamant issus soit de détonation (DND), soit de synthèse haute pression-haute température (NDHPHT) pour vectoriser les siRNA, accrochés par interaction électrostatique. Pour ce faire, les NDs ont été rendus cationiques par différentes méthodes: (i) hydrogénation assistée par plasma, (ii) par recuit thermique, ou (iii) par traitement chimique pour les DNDs, ou (iv) greffage covalent d'un polymère cationique sur des NDHPHT (COP-NDHPHT).Mes travaux ont comporté deux axes: (i) étude in vitro des complexes ND:siRNA (caractérisations physico-chimiques des NDs et étude de l'efficacité d'inhibition de l'oncogène par les complexes); (ii) distribution tissulaire de COP-NDHPHT, injectés dans des souris, grâce à des NDHPHT fluorescents, contenant des défauts azote-lacune. Pour les détecter individuellement dans des coupes d'organes de souris portant une tumeur xénogreffée sous-cutanée, nous avons développé un système d'imagerie en épifluorescence à grande ouverture numérique, et résolu en temps afin de rejeter l'autofluorescence tissulaire (de durée de vie plus courte que celle des NDs). Nous avons quantifié le nombre, l'état d'agrégation et la localisation cellulaire de ces vecteurs (grâce à un marquage histopathologique imagé simultanément) 24h après injection. Les NDs ont été clairement détectés dans les différents organes, dont la tumeur, ouvrant la voie à un contrôle de la progression tumorale grâce au siRNA. / Ewing Sarcoma is a rare pediatric cancer, caused in the majority of the cases by the expression of the fusion oncogene EWS-Fli1. Current treatments have not much evolved over the past decades. We are investigating a new therapy based on siRNA specifically targeting the oncogene and inhibiting the tumor growth. During my PhD thesis, I have tested different types of synthetic nanodiamonds (ND) used to vectorize siRNA electrostatically bound at their surface: ND produced by detonation (DND) or by High Pressure-High Temperature synthesis (NDHPTH). Their surfaces have been cationized by various processes: (i) plasma or (ii) thermal hydrogenation, (ii) chemical treatment, or (iv) covalent grafting of a copolymer (COP-NDHPHT).My PhD work included two main axis: (i) in vitro study of ND:siRNA complexes (NDs physico-chemical characterization and oncogene inhibition efficacy by the complexes); (ii) tissue distribution of COP-NDHPHT, injected into mice, using fluorescent NDHPHT containing nitrogen-vacancy defects. To detect them individually in sections of mouse organs carrying a subcutaneous xenograft tumor, we developed an epifluorescence imaging system with large numerical aperture and resolved in time to reject tissue autofluorescence (of a shorter lifetime than NDs). We quantified the number, the aggregation state and the cell localization (thanks to simultaneous histopathological imaging) of these vectors 24 hours after injection. NDs have been clearly detected in different organs, including the tumor, paving the way for tumor progression control with siRNA.
Identifer | oai:union.ndltd.org:theses.fr/2018SACLS119 |
Date | 25 May 2018 |
Creators | Claveau, Sandra |
Contributors | Université Paris-Saclay (ComUE), Mir, Lluis, Treussart, François |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0023 seconds