L’objectif de cette thèse de doctorat était de développer l’échographie ultrarapide 3D du cœur, plus particulièrement dans le but de caractériser le muscle cardiaque. A cet effet, un échographe ultrarapide assemblé dans notre laboratoire a été utilisé. Dans la première partie de cette thèse, un mode d’imagerie temps-réel a été développé pour faciliter l’imagerie in-vivo en utilisant ce scanner, ainsi que des outils de visualisation 3D et 4D. Par la suite, l’imagerie 3D du tenseur de rétrodiffusion a été développée pour analyser l’orientation des fibres musculaires du cœur de manière non-invasive au cours du cycle cardiaque. Des résultats obtenus sur un volontaire avant et après la contraction cardiaque ont été obtenus. De plus, les effets indésirables du mouvement axial ont été étudiés, et une méthode d’estimation de la vitesse axiale et de correction des aberrations induites a été proposée et appliquée sur l’homme. Cette technique pourrait devenir un outil intéressant de diagnostic et quantification de la désorganisation des fibres musculaires dans le cadre de cardiomyopathies hypertrophiques. De plus, l’échographie ultrarapide 3D a été utilisée pour visualiser la propagation dans les parois du cœur d’ondes de cisaillement générées naturellement au cours du cycle cardiaque, et un algorithme pour déterminer leurs vitesses a été développé. Cette technique a été validée grâce à des simulations numériques puis appliquée sur deux volontaires sains, pendant les phases de contraction et relaxation du myocarde. Etant donné que la vitesse des ondes de cisaillement est directement reliée à la rigidité du cœur, cette méthode pourrait permettre d’estimer la capacité du cœur à de contracter et à se relâcher, qui sont des paramètres important pour son fonctionnement. Enfin, l’activation de la contraction cardiaque de cœurs de rats isolés a été imagée à haute cadence et en 3D dans le but d’analyser la synchronisation de la contraction. Les délais d’activation mécanique ont pu correctement être quantifiés lors du rythme naturel du cœur, de stimulations électriques extérieures ainsi qu’en hypothermie. Ensuite, la faisabilité de la technique en 2D sur des cœurs humains de manière non-invasive a été étudiée et appliquée sur des fœtus et des adultes. Cette technique d’imagerie pourrait aider la caractérisation d’arythmies et améliorer leur traitement. En conclusion, nous avons introduit dans ces travaux de thèse trois nouvelles modalités d’imagerie ultrarapide 3D permettant de quantifier des propriétés structurelles et fonctionnelles du myocarde qui jusqu’ici ne pouvaient pas être imagée en échocardiographie. L’imagerie 3D ultrarapide est une modalité très prometteuse, non ionisante, transportable et qui pourrait améliorer fortement dans le futur le diagnostic et la prise en charge des patients. / The objectives of this PhD thesis were to develop 3D ultrafast ultrasound imaging of the human heart toward the characterization of cardiac tissues. In order to do so, a customized, programmable, ultrafast scanner built in our group was used. In the first part of this thesis, a real-time imaging sequence was developed to facilitate in-vivo imaging using this scanner, as well as dedicated 3D and 4D visualization tools. Then, we developed 3D Backscatter Tensor Imaging (BTI), a technique to visualize the muscular fibres orientation within the heart wall non-invasively during the cardiac cycle. Applications on a healthy volunteer before and after cardiac contraction was shown. Moreover, the undesired effects of axial motion on BTI were studied, and a methodology to estimate motion velocity and reduce the undesired affects was introduced and applied on a healthy volunteer. This technique may become an interesting tool for the diagnosis and quantification of fibres disarrays in hypertrophic cardiomyopathies. Moreover, 3D ultrafast ultrasound was used to image the propagation of naturally generated shear waves in the heart walls, and an algorithm to determine their speed was developed. The technique was validated in silico and the in vivo feasibility was shown on two healthy volunteers, during cardiac contraction and relaxation. As the velocity of shear waves is directly related to the rigidity of the heart, this technique could be a way to assess the ability of the ventricle to contract and relax, which is an important parameter for cardiac function evaluation. Finally, the transient myocardial contraction was imaged in 3D on isolated rat hearts at high framerate in order to analyse the contraction sequence. Mechanical activation delays were successfully quantified during natural rhythm, pacing and hypothermia. Then, the feasibility of the technique in 2D on human hearts non-invasively was investigated. Applications on foetuses and adults hearts were shown. This imaging technique may help the characterization of cardiac arrhythmias and thus improve their treatment. In conclusion, we have introduced in this work three novel 3D ultrafast imaging modalities for the quantification of structural and functional myocardial properties. 3D ultrafast imaging may become an important non-ionizing, transportable diagnostic tool that may improve the patient care at the bed side.
Identifer | oai:union.ndltd.org:theses.fr/2018USPCC134 |
Date | 15 November 2018 |
Creators | Finel, Victor |
Contributors | Sorbonne Paris Cité, Pernot, Mathieu, Tanter, Mickael |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text, Image |
Page generated in 0.003 seconds