Imaging mass spectrometry (IMS) in microscope mode allows the spatially resolved molecular constitution of a large sample section to be analysed in a single experiment. If performed in a linear mass spectrometer, the applicability of microscope IMS is limited by a number of factors: the low mass resolving power of the employed ion optics; the time resolution afforded by the scintillator screen based particle detector and the multi-hit capability, per pixel, of the employed imaging sensor. To overcome these limitations, this thesis concerns the construction of an advanced ion optic employing a pulsed extraction method to gain a higher ToF resolution, the development of a bright scintillator screen with short emission lifetime, and the application of the Pixel Imaging Mass Spectrometry (PImMS) sensor with multi-mass imaging and time stamping capabilities. Initial experimental results employing a three electrode ion optic to spatially map ions emitted from a sample surface are presented. By applying a static electric potential a time-of-flight resolution of t/2Δt=54 and a spatial resolution of 20 μm are determined across a field-of-view of 4 mm diameter. While the moderate time-of-flight resolution only allows particles separated by a few Dalton to be distinguished, the instrument is used to demonstrate the multi-mass imaging capabilities of the PImMS sensor when being applied to image grid structures or tissue samples. An improved time-of-flight resolution is achieved by post extraction differential acceleration of a selected range of ions (up to 100 Da) using a newly developed five electrode ion optic. This modification is shown to correct the initial velocity spread of the ions coming off the sample surface, which yields an enhanced time-of-flight resolution of t/2Δt=2000 . The spatial resolution of the instrument is found to be 20 μm across a field-of-view of 4 mm. Adjusting the extraction field strength applied to the ion optic of the constructed mass spectrometer allows the optimised mass range to be tuned to any mass of interest. Ion images are recorded for various samples with comparable spatial and ToF resolution. Hence, studies on tissue sections and multi sample arrays become accessible with the improved design and operational principle of the microscope mode IMS instrument. A fast and efficient conversion of impinging ions into detectable flashes of light, which can consequently be recorded by a fast imaging sensor, is essential to maintain the achievable time-of-flight and spatial resolution of the IMS instrument constructed. In order to find a suitable fast and bright scintillator to be applied in a microchannel based particle detector, various inorganic and organic substances are characterised in terms of their emission properties following electron excitation. Poly-para-phenylene laser dye screens are found to show an outstanding performance among all substances analysed. An emission life time of below 4 ns and a brightness exceeding that of a P47 screen (industry standard) by a factor 2× is determined. No signal degradation is observed over an extended period, and the spatial resolution is found to be comparable to commercial imaging detectors. Hence, these scintillator screens are fully compatible with any ion imaging application requiring a high time resolution. In a further series of mass spectrometric experiments, ions are accelerated onto a scintillator mounted in front of a multi pixel photon counter. The charged particle impact stimulated the emission of a few photons, which are collected by the fast photon counter. Poly-para-phenylene laser dyes again show an outstanding efficiency for the conversion of ions into photons, resulting in a signal enhancement of up to 5× in comparison to previous experiments, which employed an inorganic LYSO scintillator.
Identifer | oai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:635236 |
Date | January 2014 |
Creators | Winter, Benjamin |
Contributors | Brouard, Mark |
Publisher | University of Oxford |
Source Sets | Ethos UK |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Source | http://ora.ox.ac.uk/objects/uuid:43db5039-0490-4f97-8519-4d3ed4e30ca3 |
Page generated in 0.002 seconds