Return to search

Analyse von regulatorischen Netzwerken bei Zelldifferenzierung und in der Infektionsbiologie / Analysis of Regulatory Networks during Cell Differentiation and in Infection Biology

Das zentrale Paradigma der Systembiologie zielt auf ein möglichst umfassendes Ver-ständnis der komplexen Zusammenhänge biologischer Systeme. Die in dieser Arbeit angewandten Methoden folgen diesem Grundsatz.
Am Beispiel von drei auf Basis von Datenbanken und aktueller Literatur rekonstruier-ten Netzwerkmodellen konnte in der hier vorliegenden Arbeit die Gültigkeit analyti-scher und prädiktiver Algorithmen nachgewiesen werden, die in Form der Analy-sesoftware Jimena angewandt wurden. Die daraus resultierenden Ergebnisse sowohl für die Berechnung von stabilen Systemzuständen, der dynamischen Simulation, als auch der Identifikation zentraler Kontrollknoten konnten experimentell validiert wer-den. Die Ergebnisse wurden in einem iterativen Prozess verwendet werden um das entsprechende Netzwerkmodell zu optimieren.
Beim Vergleich des Verhaltens des semiquantitativ ausgewerteten regulatorischen Netzwerks zur Kontrolle der Differenzierung humaner mesenchymaler Stammzellen in Chondrozyten (Knorpelbildung), Osteoblasten (Knochenbildung) und Adipozyten (Fett-zellbildung) konnten 12 wichtige Faktoren (darunter: RUNX2, OSX/SP7, SOX9, TP53) mit Hilfe der Berechnung der Bedeutung (Kontrollzentralität der Netzwerkknoten identifi-ziert werden). Der Abgleich des simulierten Verhaltens dieses Netzwerkes ergab eine Übereinstimmung mit experimentellen Daten von 47,2%, bei einem widersprüchlichen Verhalten von ca. 25%, dass unter anderem durch die temporäre Natur experimentel-ler Messungen im Vergleich zu den terminalen Bedingungen des Berechnung der stabilen Systemzustände erklärt werden kann.
Bei der Analyse des Netzwerkmodells der menschlichen Immunantwort auf eine Infek-tion durch A. fumigatus konnten vier Hauptregulatoren identifiziert werden (A. fumi-gatus, Blutplättchen, hier Platelets genannt, und TNF), die im Zusammenspiel mit wei-teren Faktoren mit hohen Zentralitätswerten (CCL5, IL1, IL6, Dectin-1, TLR2 und TLR4) fähig sind das gesamte Netzwerkverhalten zu beeinflussen. Es konnte gezeigt werden, dass sich das Aktivitätsverhalten von IL6 in Reaktion auf A. fumigatus und die regulato-rische Wirkung von Blutplättchen mit den entsprechenden experimentellen Resultaten deckt.
Die Simulation, sowie die Berechnung der stabilen Systemzustände der Immunantwort von A. thaliana auf eine Infektion durch Pseudomonas syringae konnte zeigen, dass die in silico Ergebnisse mit den experimentellen Ergebnissen übereinstimmen. Zusätzlich konnten mit Hilfe der Analyse der Zentralitätswerte des Netzwerkmodells fünf Master-regulatoren identifiziert werden: TGA Transkriptionsfaktor, Jasmonsäure, Ent-Kaurenoate-Oxidase, Ent-kaurene-Synthase und Aspartat-Semialdehyd-Dehydrogenase.
Während die ersteren beiden bereits lange als wichtige Regulatoren für die Gib-berellin-Synthese bekannt sind, ist die immunregulatorische Funktion von Aspartat-Semialdehyd-Dehydrogenase bisher weitgehend unbekannt. / The central paradigm of systems biology aims at a comprehensive understanding in complex relationships of biological systems. The methods used in this work support this aim.
By the example of three network models reconstructed on the basis of databases and current literature, the validity of analytical and predictive algorithms could be demon-strated in this work. As simulation software the framework Jimena was applied. The results for the calculation of stable system states, the dynamic simulation as well as the identification of central control nodes could be validated experimentally. The re-sults were used in an iterative process to further optimize the corresponding network model.
Comparing the behavior of the semi-quantitatively evaluated regulatory network to control the differentiation of human mesenchymal stem cells into chondrocytes (carti-lage formation), osteoblasts (bone formation) and adipocytes (fatty cell formation), 12 important factors (including: RUNX2, OSX/SP7, SOX9, TP53) could be identified by the calculation of the control centralities of the network nodes. The comparison of the simulated behavior of these nodes showed an agreement with experimental data of 47.2%. We found a contradictory behavior of approximately 25%. Differing results can be explained due to the temporary nature of experimental measurements compared to the terminal conditions of the calculation the stable system states.
Analyzing the network model of the human immune response to A. fumigatus infec-tion, four major regulators could be identified (A. fumigatus, platelets, and TNF), which interact with other factors with high control centrality values (CCL5, IL1, IL6, Dectin1). TLR2 and TLR4) are capable of affecting the overall network behavior. It could be shown that the activity behavior of IL6 in response to the modular activity of the plate-lets as well as A. fumigatus coincides with the corresponding experimental results.
The simulation, as well as the calculation of the stable system states of the immune response of A. thaliana to an infection by Pseudomonas syringae, showed that in silico results are in agreement with the experimental results. By analyzing the control cen-trality values of the network model, five main regulators could be: TGA transcription factor, jasmonic acid, ent-kaurene-Oxidase, ent-kaurene synthase and aspartate semi-aldehyde.
While the former two have long been recognized as important regulators of gibberel-lin synthesis, the immunoregulatory function of aspartate semialdehyde dehydrogen-ase has been largely unknown.

Identiferoai:union.ndltd.org:uni-wuerzburg.de/oai:opus.bibliothek.uni-wuerzburg.de:19852
Date January 2020
CreatorsKaltdorf, Martin Ernst
Source SetsUniversity of Würzburg
Languagedeu
Detected LanguageEnglish
Typedoctoralthesis, doc-type:doctoralThesis
Formatapplication/pdf
Rightshttps://creativecommons.org/licenses/by/4.0/deed.de, info:eu-repo/semantics/openAccess

Page generated in 0.0104 seconds