Return to search

Seeing stars: characterization of reactive astrocytes in sport-related repetitive head impacts and chronic traumatic encephalopathy

Chronic traumatic encephalopathy (CTE) is a neurodegenerative tauopathy associated with exposure to repetitive head impacts (RHI) in contact sports. No treatments are currently available. Much of the focus in CTE has been on the microtubule-binding protein tau, which tends to accumulate within neurons and glia around blood vessels at the depths of cortical sulci. The mechanisms of tau accumulation and propagation in CTE are still unknown. The predilection for the perivascular region suggests inherent structural and/or cellular vulnerabilities in this area. Astrocytes are glial cells in this perivascular region that help form the blood brain barrier (BBB) and the neurovascular unit (NVU). Their endfeet envelop blood vessels and help transport nutrients from the blood into the brain, as well as clear harmful waste products out of the brain. Astrocytes are also vital players in many of the brain’s other normal physiological functions, including providing structural and metabolic support to neurons and maintenance of ion and water homeostasis. In response to injury or disease, astrocytes undergo a series of structural and functional changes in a process known as reactive astrogliosis. Astrogliosis is widely considered a hallmark of brain pathology, however, only recently have we begun to understand its functional implications. Astrocytes can respond heterogeneously to CNS insults, including either loss or increase of homeostatic functions, or gain of new, possibly toxic functions. These different astrocytic responses can either assist in recovery or further exacerbate injury. Our current understanding of how astrocytes are altered in RHI and CTE is limited. A degenerative phenotype has been identified in older donors with later stage CTE, but its presence in younger donors with earlier stage disease is unknown. The hypothesis of this study is that exposure to repetitive head trauma causes astrocytes to become reactive and adopt altered phenotypes, including loss of homeostatic functions, in brain areas known to be biomechanically susceptible to the shearing forces of head trauma, such as the perivascular region and interface of the grey and white matter at the depth of the cortical sulcus. These altered phenotypes are expected to be found in athletes with and without pathological tau deposition, highlighting astrocytes as potential therapeutic targets in the post-traumatic injury cascade. Specifically, I seek to characterize reactive astrocyte phenotypes and assess changes in their perivascular function in the brains of former American football players with and without a neuropathological diagnosis of CTE.

Identiferoai:union.ndltd.org:bu.edu/oai:open.bu.edu:2144/47952
Date24 January 2024
CreatorsBabcock, Katharine Jane
ContributorsMcKee, Ann C., Huber, Bertrand R.
Source SetsBoston University
Languageen_US
Detected LanguageEnglish
TypeThesis/Dissertation
RightsAttribution 4.0 International, http://creativecommons.org/licenses/by/4.0/

Page generated in 0.0156 seconds