A Tomografia por Impedância Elétrica (EIT) é um método que utiliza estimativas da distribuição de condutividade ou impedância de tecidos orgânicos na obtenção de imagens médicas. O procedimento de obtenção das imagens baseia-se em medições de correntes ou voltagens no contorno da região sob análise e na estimação de parâmetros de um modelo desta região. No caso de pacientes submetidos à respiração artificial, o conhecimento da distribuição absoluta ou das variações de condutividades nos pulmões auxilia na detecção de fenômenos como colapso alveolar ou pneumotórax e permite o ajuste e controle da vazão e pressão do ar fornecido, de modo a evitar a ocorrência de tais anomalias. Este trabalho apresenta algoritmos cujo objetivo é a solução do problema inverso e mal posto de estimar a distribuição absoluta e as variações de condutividades nos pulmões através da EIT para a geração de imagens em duas dimensões. O algoritmo para a estimação da distribuição absoluta de condutividade utiliza o filtro estendido de Kalman. As simulações numéricas mostram que, com medidas incorporando ruído cujo desvio padrão atinge até 12% da máxima voltagem, as estimativas de condutividades convergem para a distribuição esperada com um desvio inferior a 7% do valor da máxima condutividade. Quanto à detecção de variações de condutividades em relação a uma distribuição de condutividades tomada como referência, as simulações numéricas sugerem que a solução do problema depende da utilização de métodos de regularização. / Electrical Impedance Tomography (EIT) is a method that uses estimates of conductivity or impedance distribution in living tissues to generate medical images. The estimation procedure is based on measurements of electrical currents or voltages at the boundary of the region under analysis, and on the processing of these data through a proper algorithm. In patients under artificial ventilation, knowledge of absolute or relative conductivity distribution in the lungs helps detecting the presence of alveolar collapse or pneumothorax, and allows setting and controlling air volume and pressure of the ventilation device. This work presents algorithms that aim at solving the ill-posed inverse problem of estimating absolute and relative conductivity distribution in the lungs through EIT for cross-sectional image reconstruction. The algorithm for absolute conductivity distribution estimation uses the extended Kalman filter. Numerical simulations show that, when the standard deviation of the measurement noise level raises up to 12% of the maximal measured voltage, the conductivity estimates converge to the expected vector within 7% accuracy of the maximal conductivity value. Addressing the estimation of conductivity changes in relation to a conductivity distribution taken as reference, numerical simulations suggest that the problem may be properly solved using regularization methods.
Identifer | oai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-23112001-151232 |
Date | 10 October 2001 |
Creators | Flavio Celso Trigo |
Contributors | Raul Gonzalez Lima, Joyce da Silva Bevilacqua, Agenor de Toledo Fleury |
Publisher | Universidade de São Paulo, Engenharia Mecânica, USP, BR |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Source | reponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.002 seconds