Return to search

A computational environment for mining association rules and frequent item sets

Mining frequent itemsets and association rules is a popular and well researched approach to discovering interesting relationships between variables in large databases. The R package arules presented in this paper provides a basic infrastructure for creating and manipulating input data sets and for analyzing the resulting itemsets and rules. The package also includes interfaces to two fast mining algorithms, the popular C implementations of Apriori and Eclat by Christian Borgelt. These algorithms can be used to mine frequent itemsets, maximal frequent itemsets, closed frequent itemsets and association rules. (author's abstract) / Series: Research Report Series / Department of Statistics and Mathematics

Identiferoai:union.ndltd.org:VIENNA/oai:epub.wu-wien.ac.at:epub-wu-01_821
Date January 2005
CreatorsHahsler, Michael, Grün, Bettina, Hornik, Kurt
PublisherInstitut für Statistik und Mathematik, WU Vienna University of Economics and Business
Source SetsWirtschaftsuniversität Wien
LanguageEnglish
Detected LanguageEnglish
TypePaper, NonPeerReviewed
Formatapplication/pdf
Relationhttp://epub.wu.ac.at/132/

Page generated in 0.0019 seconds