Return to search

Preparation, Characterization, and Evaluation of Photocatalytic Properties of a Novel NaNbO3/Bi2WO6 Heterostructure Photocatalyst for Water Treatment

Semiconductor-based heterogeneous photocatalysis, as one of the advanced oxidation processes that makes use of semiconductors and inexhaustible solar light, has recently been extensively studied and applied to water decontamination. However, due to low light absorption efficiencies and severe electron-hole recombination, modifications on semiconductor structures are required in order to enhance their photocatalytic performance. Heterogeneous photocatalyst composites, taking advantage of the improved light absorption efficiency as well as the facilitated electron-hole separation at the interface between different semiconductors, have been proven to be a promising strategy. In this study, novel NaNbO3/Bi2WO6 photocatalyst composites with a type-II heterogeneous alignment were successfully prepared via a facile wet impregnation method. The as-prepared photocatalysts were characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), diffuse reflectance UV-Vis spectroscopy (DRS), photocurrent (PC) and electrochemical impedance spectroscopy (EIS) analyses. The 30 wt% NaNbO3/Bi2WO6 composite exhibited the best performance for degrading an RhB (rhodamine B) aqueous solution under visible light irradiation (λ > 410 nm), which was ca. 40 times and ca. 2.5 times that of the pristine NaNbO3 and Bi2WO6, respectively. The improved photocatalytic activity may be attributed to the enhanced electron-hole separation efficiency in Bi2WO6 with the assistance of NaNbO_3, as well as the dye-sensitization effect of RhB itself. Radical quenching experiments revealed that h+ played the predominant role, and O2•- functioned as well to some degree. The produced intermediates during the reaction and RhB degradation pathway were speculated and investigated as well. The excellent stability and reusability were verified by repetitively running for five times. Based on experimental results, a plausible functioning mechanism was proposed. Effects of several operation parameters on the catalyst performance including initial RhB concentration, catalyst dosage, reaction temperature and initial pH were also discussed. This study provides solid evidence for NaNbO3 to be a promising candidate for photocatalysis and gives out a novel photocatalytic mechanism of Bi2WO6-based type-II heterostructures.

Identiferoai:union.ndltd.org:uottawa.ca/oai:ruor.uottawa.ca:10393/38080
Date10 September 2018
CreatorsQiao, Yu
ContributorsZhang, Zisheng
PublisherUniversité d'Ottawa / University of Ottawa
Source SetsUniversité d’Ottawa
LanguageEnglish
Detected LanguageEnglish
TypeThesis
Formatapplication/pdf

Page generated in 0.0019 seconds