Ma thèse de doctorat se concentre principalement sur le comportement en temps long des processus de Markov, les inégalités fonctionnelles et les techniques relatives. Plus spécifiquement, Je vais présenter les taux de convergence sous-exponentielle explicites des processus de Markov dans deux approches : la méthode Meyn-Tweedie et l'hypocoercivité (faible). Le document se divise en trois parties. Dans la première partie, Je vais présenter quelques résultats importants et des connaissances connexes. D'abord, un aperçu de mon domaine de recherche sera donné. La convergence exponentielle (ou sous-exponentielle) des chaînes de Markov et des processus de Markov (à temps continu) est un sujet d'actualité dans la théorie des probabilité. La méthode traditionnelle développée et popularisée par Meyn-Tweedie est largement utilisée pour ce problème. Dans la plupart des résultats, le taux de convergence n'est pas explicite, et certains d'entre eux seront brièvement présentés. De plus, la fonction de Lyapunov est cruciale dans l'approche Meyn-Tweedie, et elle est aussi liée à certaines inégalités fonctionnelles (par exemple, inégalité de Poincaré). Cette relation entre fonction de Lyapounov et inégalités fonctionnelles sera donnée avec les résultats au sens L2. En outre, pour l'exemple de l'équation cinétique de Fokker-Planck, un résultat de convergence exponentielle explicite de la solution sera introduite à la manière de Villani : l'hypocoercivité. Ces contenus sont les fondements de mon travail, et mon but est d'étudier la décroissance sous-exponentielle. La deuxième partie, fait l'objet d'un article écrit en coopération avec d'autres sur les taux de convergence sous-exponentielle explicites des processus de Markov à temps continu. Comme nous le savons, les résultats sur les taux de convergence explicites ont été donnés pour le cas exponentiel. Nous les étendons au cas sous-exponentielle par l'approche Meyn-Tweedie. La clé de la preuve est l'estimation du temps de passage dans un ensemble "petite", obtenue par Douc, Fort et Guillin, mais pour laquelle nous donnons une preuve plus simple. Nous utilisons aussi la construction du couplage et donnons une ergodicité sous exponentielle explicite. Enfin, nous donnons quelques applications numériques. Dans la dernière partie, mon second article traite de l'équation cinétique de Fokker-Planck. Je prolonge l'hypocoercivité à l'hypocoercivité faible qui correspond à inégalité de Poincaré faible. Grâce à cette extension, on peut obtenir le taux de convergence explicite de la solution, dans des cas sous-exponentiels. La convergence est au sens H1 et au sens L2. A la fin de ce document, j'étudie le cas de l'entropie relative comme Villani, et j'obtiens la convergence au sens de l'entropie. Enfin, Je donne deux exemples pour les potentiels qui impliquent l'inégalité de Poincaré faible ou l'inégalité de Sobolev logarithmique faible pour la mesure invariante.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00840858 |
Date | 04 July 2012 |
Creators | Wang, Xinyu |
Publisher | Université Blaise Pascal - Clermont-Ferrand II |
Source Sets | CCSD theses-EN-ligne, France |
Language | fra |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0015 seconds