Return to search

Computational investigation into finite groups

We briefly discuss the algorithm given in [Bates, Bundy, Perkins, Rowley, J. Algebra, 316(2):849-868, 2007] for determining the distance between two vertices in a commuting involution graph of a symmetric group.We develop the algorithm in [Bates, Rowley, Arch. Math. (Basel), 85(6):485-489, 2005] for computing a subgroup of the normalizer of a 2-subgroup X in a finite group G, examining in particular the issue of when to terminate the randomized procedure. The resultant algorithm is capable of handling subgroups X of order up to 512 and is suitable, for example, for matrix groups of large degree (an example calculation is given using 112x112 matrices over GF(2)).We also determine the suborbits of conjugacy classes of involutions in several of the sporadic simple groups?namely Janko's group J4, the Fischer sporadic groups, and the Thompson and Harada-Norton groups. We use our results to determine the structure of some graphs related to this data.We include implementations of the algorithms discussed in the computer algebra package MAGMA, as well as representative elements for the involution suborbits.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:538366
Date January 2011
CreatorsTaylor, Paul Anthony
ContributorsRowley, Peter ; Eaton, Charles
PublisherUniversity of Manchester
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttps://www.research.manchester.ac.uk/portal/en/theses/computational-investigation-into-finite-groups(8fe69098-a2d0-4717-b8d3-c91785add68c).html

Page generated in 0.0019 seconds