Return to search

Metal release from powder particles in synthetic biological media

<p>Humans are exposed to metals and metal-containing materials daily, either conscious, e.g. using metal tools or objects, or unconscious, e.g. during exposure to airborne metal-, and metal-containing particles. The diffuse dispersion of metals from different sources in the society, and the concern related to its potential risk for adverse effects on humans have gained an increased public and governmental attention both on a national and international level. In this context, the knowledge on metal release from metallic objects or metal-containing particles is essential for health risk assessment.</p><p>This thesis focuses on the study of metal release from powder particles of stainless steel and Cu-based materials exposed to synthetic body fluids mainly for simulating lung-like environments. The study comprises: i) development of a suitable experimental method for metal release studies of micron sized particles, ii) metal release data of individual alloy constituents from stainless steel powder particles of different particle sizes, and iii) Cu release from different Cu-based powder particles. In addition, the influence of chemical and physical properties of metallic particles and the test media are investigated. Selected results from Ni powder particles exposed to artificial sweat are presented for comparison. The outcome of this research is summarized through ten questions that are formulated to improve the general understanding of corrosion-induced metal release from metallic particles from a health risk perspective.</p><p>A robust, reproducible, fairly simple, and straightforward experimental procedure was elaborated for metal release studies on particles of micron or submicron size. Results in terms of metal release rates show, for stainless steel powder particles, generally very low metal release rates due to a protective surface oxide film, and Fe preferentially released compared to Cr and Ni. Metal release rates are time-dependent for both stainless steel powder particles and the different Cu-containing powders investigated. The release of Cu from the Cu-containing particles depends on the chemical and compositional properties of the Cu-based material, being either corrosion-induced or chemically dissolved. Moreover, the test medium also influences the metal release process. The metal release rate increases generally with decreasing pH of the test media. However, even at a comparable pH, the release rate may be different due to differences in the interaction between the particle surface and specific media.</p><p>The nature of particles is essentially different compared to massive sheet in terms of physical shape, surface composition and morphology. The surface area, and even the surface composition of metallic particles, depend on the particle size. The specific surface area of particles, area per mass, is intimately related to the particle size and has a large effect on the metal release process. Release rates increase with decreasing particle size due to a larger active surface area that takes part in the corrosion/dissolution process. The surface area that actually is active in the corrosion and metal release process (the effective area) governs the metal release process for both particles and massive sheet of metals or alloys. For particles, the effective surface area depends also on agglomeration conditions of particles during exposure.</p>

Identiferoai:union.ndltd.org:UPSALLA/oai:DiVA.org:kth-4039
Date January 2006
CreatorsMidander, Klara
PublisherKTH, Materials Science and Engineering, Stockholm : Materialvetenskap
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeLicentiate thesis, comprehensive summary, text

Page generated in 0.002 seconds