Non-volatile random-access memory (NVRAM) is about to hit the market and will require significant changes to the architecture of in-memory database systems. Since such hybrid DRAM-NVRAM database systems will keep the primary data solely persistent in the NVRAM, efficient replication mechanisms need to be considered to prevent data losses and to guarantee high availability in case of NVDIMM failures. In this paper, we argue for a software-based replication approach and present compute node-local mechanisms to provide the building blocks for an efficient NVRAM replication with a low latency and throughput penalty. Within our evaluation, we measured up to 10x less overhead for our optimized replication mechanisms compared to the basic replication mechanism of the Intel persistent memory development kit (PMDK).
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:79868 |
Date | 11 July 2022 |
Creators | Zarubin, Mikhail, Kissinger, Thomas, Habich, Dirk, Lehner, Wolfgang |
Publisher | ACM |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | English |
Detected Language | English |
Type | info:eu-repo/semantics/acceptedVersion, doc-type:conferenceObject, info:eu-repo/semantics/conferenceObject, doc-type:Text |
Rights | info:eu-repo/semantics/openAccess |
Relation | 978-1-4503-5853-8, 7, 10.1145/3211922.3211931, info:eu-repo/grantAgreement/Deutsche Forschungsgemeinschaft/Sonderforschungsbereiche/164481002//HAEC - Highly Adaptive Energy-Efficient Computing/SFB 912, info:eu-repo/grantAgreement/Deutsche Forschungsgemeinschaft/Exzellenzcluster/194636624//Zentrum für Perspektiven in der Elektronik Dresden/EXC 1056 |
Page generated in 0.0018 seconds