Made available in DSpace on 2018-03-22T15:58:37Z (GMT). No. of bitstreams: 1
tese_11599_Tese RONIE 2017.pdf: 4177065 bytes, checksum: 1b016d3af9325652723c7cce35e7c06d (MD5)
Previous issue date: 2017-12-19 / O principal problema encontrado quando da aplicação de técnicas de sistemas de informações geográficas e sensoriamento remoto para a predição de incêndios florestais é a necessidade de integrar diferentes fontes de dados. Os métodos aplicados, geralmente são baseados em técnicas de regressão ou em coeficientes que dependem de conhecimentos dos especialistas. Esta pesquisa objetivou testar a capacidade da árvore de classificação e regressão (CART) em avaliar o risco de incêndios florestais no estado do Espírito Santo. A análise CART é uma técnica estatística não paramétrica que gera regras de decisão na forma de uma árvore binária, para um processo de classificação ou de regressão. O produto MCD45A1 de área de queima, relativo a um período de 16 anos (2000-2015), foi utilizado para, a partir dos pontos centrais da célula de grade, obter um mapa de ocorrência de incêndio por meio de uma abordagem de densidade Kernel. O mapa resultante foi então utilizado como variável de entrada para a análise CART com variáveis de influência de incêndios usados como preditores. Um total de 12 variáveis preditoras foram determinadas de diversas bases de dados, abrangendo aspectos ambientais, físicos e socioeconômicos. As regras induzidas pelo processo de regressão permitiram a definição de diferentes níveis de risco, expressa em 35 unidades de gestão, utilizado para a produção de um mapa de predição de fogo. De acordo com os resultados, as áreas de maiores riscos no estado são representadas pela Região Nordeste, Vale do Rio Doce e Sudeste (Costa Sul). Os resultados do processo de regressão (r=0,94 e r²=0,88), a capacidade de análise do algoritmo CART para destacar as relações hierárquicas entre as variáveis preditoras e a interpretabilidade fácil das regras de decisão, representam uma ferramenta possível para melhor abordar o problema de avaliar e representar o risco de incêndios florestais.
Palavras-chave: Estatística não paramétrica, Densidade Kernel, Algoritmo CART, Regras de decisão, Mapa de predição do fogo.
Identifer | oai:union.ndltd.org:IBICT/oai:dspace2.ufes.br:10/6945 |
Date | 19 December 2017 |
Creators | JUVANHOL, R. S. |
Contributors | SANTOS, A. R., PEZZOPANE, J. E. M., PELUZIO, T. M. O., SILVA, W. B., PINHEIRO, C. J. G., FIEDLER, N. C. |
Publisher | Universidade Federal do Espírito Santo, Doutorado em Ciências Florestais, Programa de Pós-Graduação em Ciências Florestais, UFES, BR |
Source Sets | IBICT Brazilian ETDs |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis |
Format | application/pdf |
Source | reponame:Repositório Institucional da UFES, instname:Universidade Federal do Espírito Santo, instacron:UFES |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.002 seconds