Return to search

Superconnections and index theory

This document presents a systematic investigation of the geometric index theory of Dirac operators coupled superconnections. A local version of the index theorem for Dirac operators coupled to superconnection is proved, and extended to families. An [eta]-invariant is defined, and it is shown to satisfy an APS-like theorem. A geometric determinant line bundle with section, metric, and connection is associated to a family of Dirac operators coupled to superconnections, and its holonomy is calculated in terms of the [eta]-invariant. / text

Identiferoai:union.ndltd.org:UTEXAS/oai:repositories.lib.utexas.edu:2152/17871
Date11 September 2012
CreatorsKahle, Alexander Rudolf
Source SetsUniversity of Texas
LanguageEnglish
Detected LanguageEnglish
Formatelectronic
RightsCopyright is held by the author. Presentation of this material on the Libraries' web site by University Libraries, The University of Texas at Austin was made possible under a limited license grant from the author who has retained all copyrights in the works.

Page generated in 0.0018 seconds