This document presents a systematic investigation of the geometric index theory of Dirac operators coupled superconnections. A local version of the index theorem for Dirac operators coupled to superconnection is proved, and extended to families. An [eta]-invariant is defined, and it is shown to satisfy an APS-like theorem. A geometric determinant line bundle with section, metric, and connection is associated to a family of Dirac operators coupled to superconnections, and its holonomy is calculated in terms of the [eta]-invariant. / text
Identifer | oai:union.ndltd.org:UTEXAS/oai:repositories.lib.utexas.edu:2152/17871 |
Date | 11 September 2012 |
Creators | Kahle, Alexander Rudolf |
Source Sets | University of Texas |
Language | English |
Detected Language | English |
Format | electronic |
Rights | Copyright is held by the author. Presentation of this material on the Libraries' web site by University Libraries, The University of Texas at Austin was made possible under a limited license grant from the author who has retained all copyrights in the works. |
Page generated in 0.0018 seconds