Return to search

Wintertime Circulation within the Southeast Indian Ocean: a Numerical Study

A numerical study is made of the wintertime circulation within the Southeast Indian Ocean (SEIO). The downwelling favourable winds result in a continuous eastward Coastal Current (CC) extending from Cape Leeuwin to the eastern coast of Tasmania, where it forms a confluence with the south branch of the East Australian Current. An additional forcing mechanism for the CC is the Leeuwin Current in the western part of the domain. The study here is divided in two parts: (1) available data and the wintertime averaged results from the Ocean Circulation and Climate Advanced Model (OCCAM) are analysed to provide a first order description of the large-scale circulation; (2) a high resolution model (Princeton Ocean Model) is nested within OCCAM to examine the shelf-slope circulation within the eastern SEIO. The nested model is forced with climatological monthly average winds and several experiments were run to simulate the effects of surface fluxes of density, enhanced bottom friction and stronger winds. In summary, the shelf-slope circulation is governed by a surface south-eastward CC that carries around 2 Sv and reaches velocities of up to 50 cm/s, where the shelf is narrowest. The core of the current is generally constrained to the shelf-break region. Zonal winds and geostrophic control of the CC lead to a transport of 1 Sv through Bass Strait and a north-eastward jet that is directed into the strait between King Is. and Tasmania. Further south, the CC is poleward and known as the Zeehan Current (ZC). Between Cape Leeuwin and Tasmania and over the slope region, a westward current (the Flinders Current) is found at depths of 500-1000 m and has an associated transport of 5-7 Sv. The current is shown to result from a northward Sverdrup transport in the deep ocean. Meso-scale eddies are shown to result from baroclinic instability and have wavelengths of around 250 km and transports of 3-4 Sv, and can dominate the slope circulation. A comparison of the numerical results is also made with two current meter data sets and results show an interannual variability in the ZC strength, that is probably related to ENSO.

Identiferoai:union.ndltd.org:ADTP/187776
Date January 2000
CreatorsCirano, Mauro, School of Mathematics, UNSW
PublisherAwarded by:University of New South Wales. School of Mathematics
Source SetsAustraliasian Digital Theses Program
LanguageEnglish
Detected LanguageEnglish
RightsCopyright Mauro Cirano, http://unsworks.unsw.edu.au/copyright

Page generated in 0.0016 seconds