This dissertation has focused on the study of the ITO/organic heterojunction and the chemistries therein, it proposes appropriate strategies that enhance the interfacial physical and electronic properties for charge injection with application to organic thin-layer devices. We focused on four major aspects of this work: i) To characterize the ITO surface and chemistries that may be pertinent to interaction with adjacent organic layers in a device configuration. This developed a working model of surface and provided a foundation for modification strategies. Characterization of the electronic properties of the surface indicate less than 5% of the geometrical surface is responsible for the bulk of current flow while the rest is electrically inactive. ii) To determine the extent to which these chemistries are variable and propose circumstances where compositional changes can occur. It is shown that the surface chemistry of ITO is heterogeneous and possible very dynamic with respect to the surrounding environment. iii) To propose a strategy for modification of the interface. Modification of ITO surfaces by small molecules containing carboxylic acid functionalities is investigated. Enhancements in the electron transfer rate coefficient were realized after modification of the ITO electrode. The enhancements are found to stem from a light etching mechanism. Additionally, an elecro-catalytic effect was observed with some of the modifiers. iv) Apply these modifications to organic light emitting diodes (OLEDs) and organic photovoltaic devices (OPVs). Enhancements seen in solution electrochemical experiments are indicative of the enhancements seen for solid state devices. Modifications resulted in substantially lower leakage currents (3 orders of magnitude in some cases) as well as nearly doubling the efficiency.An additional chapter describes the creation and characterization of electrochemically grown polymer nano-structures based on blazed angle diffraction gratings. The discussion details the micro-contact printing process and the electro-catalytic growth of the conductive polymers PANI and PEDOT to form diffraction grating structures in their own right. The resulting diffraction efficiency of these structures is shown to be sensitive to environmental conditions outlining possible uses as chemical sensors. This is demonstrated by utilizing these structures as working pH and potentiometric sensors based on the changing diffraction efficiency.
Identifer | oai:union.ndltd.org:arizona.edu/oai:arizona.openrepository.com:10150/195405 |
Date | January 2006 |
Creators | Carter, Chet |
Contributors | Armstrong, Neal R., Evans, Dennis H., Saavedra, S. Scott, McGrath, Dominic V. |
Publisher | The University of Arizona. |
Source Sets | University of Arizona |
Language | English |
Detected Language | English |
Type | text, Electronic Dissertation |
Rights | Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. |
Page generated in 0.0024 seconds