Fire prone Mediterranean-type vegetation systems like those in the Mediterranean Basin and South-Western Australia are global hot spots for plant species diversity. To ensure management programs act to maintain these highly diverse plant communities, it is necessary to get a profound understanding of the crucial mechanisms of coexistence. In the current literature several mechanisms are discussed. The objective of my thesis is to systematically explore the importance of potential mechanisms for maintaining multi-species, fire prone vegetation by modelling. The model I developed is spatially-explicit, stochastic, rule- and individual-based. It is parameterised on data of population dynamics collected over 18 years in the Mediterranean-type shrublands of Eneabba, Western Australia. From 156 woody species of the area seven plant traits have been identified to be relevant for this study: regeneration mode, annual maximum seed production, seed size, maximum crown diameter, drought tolerance, dispersal mode and seed bank type. Trait sets are used for the definition of plant functional types (PFTs). The PFT dynamics are simulated annual by iterating life history processes.
In the first part of my thesis I investigate the importance of trade-offs for the maintenance of high diversity in multi-species systems with 288 virtual PFTs. Simulation results show that the trade-off concept can be helpful to identify non-viable combinations of plant traits. However, the Shannon Diversity Index of modelled communities can be high despite of the presence of ‘supertypes’. I conclude, that trade-offs between two traits are less important to explain multi-species coexistence and high diversity than it is predicted by more conceptual models.
Several studies show, that seed immigration from the regional seed pool is essential for maintaining local species diversity. However, systematical studies on the seed rain composition to multi-species communities are missing. The results of the simulation experiments, as presented in part two of this thesis, show clearly, that without seed immigration the local species community found in Eneabba drifts towards a state with few coexisting PFTs. With increasing immigration rates the number of simulated coexisting PFTs and Shannon diversity quickly approaches values as also observed in the field. Including the regional seed input in the model is suited to explain more aggregated measures of the local plant community structure such as species richness and diversity. Hence, the seed rain composition should be implemented in future studies.
In the third part of my thesis I test the sensitivity of Eneabba PFTs to four different climate change scenarios, considering their impact on both local and regional processes. The results show that climate change clearly has the potential to alter the number of dispersed seeds for most of the Eneabba PFTs and therefore the source of the ‘immigrants’ at the community level. A classification tree analysis shows that, in general, the response to climate change was PFT-specific. In the Eneabba sand plains sensitivity of a PFT to climate change depends on its specific trait combination and on the scenario of environmental change i.e. development of the amount of rainfall and the fire frequency. This result emphasizes that PFT-specific responses and regional process seed immigration should not be ignored in studies dealing with the impact of climate change on future species distribution.
The results of the three chapters are finally analysed in a general discussion. The model is discussed and improvements and suggestions are made for future research. My work leads to the following conclusions:
i) It is necessary to support modelling with empirical work to explain coexistence in species-rich plant communities.
ii) The chosen modelling approach allows considering the complexity of coexistence and improves the understanding of coexistence mechanisms.
iii) Field research based assumptions in terms of environmental conditions and plant life histories can relativise the importance of more hypothetic coexistence theories in species-rich systems. In consequence, trade-offs can play a lower role than predicted by conceptual models.
iv) Seed immigration is a key process for local coexistence. Its alteration because of climate change should be considered for prognosis of coexistence. Field studies should be carried out to get data on seed rain composition. / Feuer geprägte, mediterrane Vegetationstypen, wie sie im Mittelmeerraum und Süd-West Australien zu finden sind, gelten als globale „hotspots“ für Pflanzendiversität. Um sicher zu stellen, dass Managementprogramme zum Erhalt dieser hoch diversen Pflanzengesellschaften zielgerichtet beitragen, ist ein profundes Verständnis der wesentlichen Koexistenzmechanismen notwendig. In der aktuellen Literatur werden verschiedene Mechanismen diskutiert. Das Ziel meiner Doktorarbeit ist es, die Bedeutung der Mechanismen für den Erhalt der artenreichen, feuergeprägten Vegetation anhand eines Modells systematisch zu untersuchen. Das von mir dafür entwickelte Modell ist räumlich-explizit, stochastisch und regel- und individuenbasiert. Es ist unter Zuhilfenahme von Daten zu Populationsdynamiken parametrisiert, die über 18 Jahre im Mediterranen Buschland von Eneabba Westaustraliens gesammelt wurden. Anhand von 156 Arten sind sieben für meine Studie relevante Pflanzeneigenschaften identifiziert wurden: Regenerationsart, jährlich maximale Samenproduktion, Samengröße, maximaler Durchmesser, Trockentoleranz, Ausbreitungsart und Samenbanktyp. Kombinationen der Eigenschaften bilden funktionelle Pflanzentypen (PFTs), deren jährliche Dynamik über Lebenszyklusprozesse im Modell simuliert wird.
Der erste Teil meiner Arbeit präsentiert die Studie zur Bedeutung von „trade-offs“ für den Erhalt der hohen Diversität in artenreichen Systemen. Die Simulationsergebnisse mit 288 virtuellen PFTs zeigen, dass das „trade-offs“-Konzept für die Identifizierung nicht-lebensfähiger Kombinationen von Pflanzeneigenschaften hilfreich sein kann. Allerdings kann der Shannon-Diversitäts-Index der modellierten Pflanzengesellschaft trotz der Anwesenheit von „Supertypen“ hoch sein. Ich schlussfolgere, dass „trade-off“ zwischen zwei Eigenschaften weniger wichtig für die Erklärung der Koexistenz von vielen Arten und hoher Diversität sind, als es durch konzeptionelle Modelle vorhergesagt wird.
Viele Studien zeigen, dass Sameneintrag aus dem regionalen Samenpool essenziell für den Erhalt lokaler Artendiversität ist. Es gibt allerdings noch keine systematischen Studien zur Zusammensetzung des Samenregens artenreichen Systemen. Die Ergebnisse der Simulationsexperimente im zweiten Teil meiner Arbeit machen deutlich, dass ohne Sameneintrag die lokale Pflanzengesellschaft Eneabbas sich in eine Richtung entwickelt, in der nur wenige PFTs koexistieren. Mit steigender Samenimmigrationsrate erreicht die Anzahl an koexistierenden PFTs und die Shannon-Diversität schnell die Werte, die auch im Feld gefunden werden. Der regionale Sameneintrag kann also als Erklärung zur Struktur lokaler Pflanzengesellschaften dienen. Seine Zusammensetzung sollte jedoch in zukünftigen Studien berücksichtigt werden.
Im dritten Teil meiner Doktorarbeit präsentiere ich Analysen zur Sensibilität der PFTs von Eneabba vorhergesagte Klimaszenarien und der Auswirkungen auf die Samenimmigration. Die Ergebnisse zeigen deutlich, dass Klimaänderungen das Potential haben, die Anzahl an ausgebreiteten Samen der meisten Eneabba PFTs zu verändern. Die Entscheidungsbaum-Analyse veranschaulicht, dass die Reaktion auf Klimaänderung PFT-spezifisch ist. In den Eneabba hängt die Sensitivität der PFTs gegenüber klimatischen Veränderungen von den PFT-spezifischen Eigenschaftskombinationen und vom Klimaszenarium ab, d.h. von der Entwicklung der Regenfallmenge und der Feuerfrequenz. Dieses Ergebnis betont, dass PFT-spezifische Reaktionen und die klimabedingten Änderungen in der Samenimmigration in Studien zum Einfluss von Klimaänderungen auf die zukünftige Artenverteilung berücksichtigt werden sollten.
Die Ergebnisse aus den drei Kapiteln werden in der allgemeinen Diskussion zusammengeführt und analysiert. Das Modell wird diskutiert und Verbesserungen und Vorschläge für weitere Forschung aufgezeigt. Meine Arbeit führt zu folgenden Schlussfolgerungen:
i) Es ist notwendig, empirische Arbeit und Modellierung zu kombinieren, um Koexistenz in artenreichen Systemen zu erklären.
ii) Durch den gewählten Modellansatz kann die Komplexität von Koexistenz erfasst und das Verständnis vertieft werden.
iii) Auf Felddaten basierende Annahmen bezüglich Umweltbedingungen und Lebenzyklus können zur Relativierung der Bedeutsamkeit von Mechanismen führen. So können Trade-offs eine geringere Rolle spielen, als konzeptionelle Modelle nahe legen.
iv) Samenimmigration ist ein Schlüsselprozess für lokale Koexistenz. Deren Änderung aufgrund von Klimawandel sollte für Prognosen zu Artenvorkommen berücksichtigt werden. Feldstudien sollten durchgeführt werden, um die Datenlücken zur Samenregenzusammensetzung zu füllen.
Identifer | oai:union.ndltd.org:Potsdam/oai:kobv.de-opus-ubp:4463 |
Date | January 2010 |
Creators | Esther, Alexandra |
Publisher | Universität Potsdam, Mathematisch-Naturwissenschaftliche Fakultät. Institut für Biochemie und Biologie |
Source Sets | Potsdam University |
Language | English |
Detected Language | English |
Type | Text.Thesis.Doctoral |
Format | application/pdf |
Rights | http://creativecommons.org/licenses/by-nc-nd/3.0/de/ |
Page generated in 0.0071 seconds