Return to search

Multilevel Models for Longitudinal Data

Longitudinal data arise when individuals are measured several times during an ob- servation period and thus the data for each individual are not independent. There are several ways of analyzing longitudinal data when different treatments are com- pared. Multilevel models are used to analyze data that are clustered in some way. In this work, multilevel models are used to analyze longitudinal data from a case study. Results from other more commonly used methods are compared to multilevel models. Also, comparison in output between two software, SAS and R, is done. Finally a method consisting of fitting individual models for each individual and then doing ANOVA type analysis on the estimated parameters of the individual models is proposed and its power for different sample sizes and effect sizes is studied by simulation.

Identiferoai:union.ndltd.org:ETSU/oai:dc.etsu.edu:etd-4493
Date01 August 2016
CreatorsKhatiwada, Aastha
PublisherDigital Commons @ East Tennessee State University
Source SetsEast Tennessee State University
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceElectronic Theses and Dissertations
RightsCopyright by the authors.

Page generated in 0.0019 seconds