Perophoramidine 1 is a halogenated natural product which contains two contiguous quaternary centres within its structure. In this thesis, approaches towards the synthesis of perophoramidine are described. In particular, the synthesis of the tetracyclic core structure and the formation of the quaternary centres have been examined. In Chapter 1, the natural product perophoramidine 1 is introduced and its isolation, structure and biological activity is discussed. The structurally related communesin family of natural products are also introduced before the literature published on both the biosynthesis and laboratory synthesis of perophoramidine 1, is reviewed. Finally the Westwood group's approach towards the synthesis of perophoramidine 1 is introduced with a summary of non-halogenated model system investigations previously carried out within the group being provided. Chapter 2 describes studies towards the synthesis of an appropriately halogenated indolo[2,3-b]quinoline core structure of perophoramidine 1. This then allowed methodology previously developed within the group on model system substrates to be applied to the formation of the first of the two quaternary centres required for the synthesis of perophoramidine 1. Chapter 3 describes the attempted formation of the second quaternary centre using an ester alkylation approach. After initial studies failed to generate the desired quaternary centre, non-halogenated model system studies were carried out in an attempt to develop an alternative approach. In Chapter 4, model system studies were continued with cyclic ether compounds investigated as potential intermediates towards the synthesis of perophoramidine 1. The results obtained in this chapter provided a novel route to the formation of the second quaternary centre and led to a redesigned approach towards perophoramidine 1 being developed. In Chapter 5, this redesigned approach was applied to the halogenated intermediates synthesised in Chapter 1. This led to the formation of the first halogenated intermediate synthesised within the group which contained the two contiguous quaternary centres required for the synthesis of perophoramidine 1.
Identifer | oai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:572714 |
Date | January 2013 |
Creators | Johnston, Craig A. |
Contributors | Westwood, Nicholas James |
Publisher | University of St Andrews |
Source Sets | Ethos UK |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Source | http://hdl.handle.net/10023/3546 |
Page generated in 0.0018 seconds