Return to search

Eloping Prevention, Occupancy Detection and Localizing System for Smart Healthcare Applications

The purpose of this thesis is to devise a system based on RFID (Radio Frequency IDentification) that can be used for smart healthcare applications. Location estimation, eloping prevention and occupancy detection are monitoring applications of smart healthcare which can provide very useful information for the nursing and administration staff of the nursing-home/hospital. The introduction of ubiquitous networking along with the concepts such as Internet of Things (IoT) can certainly help achieve the goals of smart healthcare. RFID technology has features, such as low power and small size, which makes this technology suitable for researching solutions for smart healthcare.
Today several nursing-home/hospital monitoring solutions exist in the market and academia alike. The solutions marketed commercially are very expensive whereas the solutions from academia provides solutions to isolated problems but a comprehensive all in one solution that can meet the need of smart healthcare monitoring applications is missing.
In this thesis we present a system that is low cost and suitable for accommodating a number of the smart healthcare applications including occupancy detection, location estimation, eloping prevention and access control. The solution is implemented on a customized Openbeacon Active RFID System (OARS). Active RFID based proximity detection is the core of our system. Practical experiments based on novel Proximity Detection based Weighted Centroid Localization (PD-WCL) method were done to analyze the performance of the system with different applications to highlight the applicability of the system.

Identiferoai:union.ndltd.org:uottawa.ca/oai:ruor.uottawa.ca:10393/30926
Date January 2014
CreatorsRoshan, Muhammad Hassan Ahmad
ContributorsBolic, Miodrag
PublisherUniversité d'Ottawa / University of Ottawa
Source SetsUniversité d’Ottawa
LanguageEnglish
Detected LanguageEnglish
TypeThesis

Page generated in 0.0112 seconds