Return to search

Human Cerebral Organoids in Pillar/Perfusion Plates for Modeling Neurodevelopmental Disorders

Human induced pluripotent stem cell (iPSCs)-derived brain organoids have potential to recapitulate the earliest stages of brain development, serving as an effective in vitro model for studying both normal brain development and disorders. In this study, we demonstrate a straightforward approach of generating multiple cerebral organoids from iPSCs on a pillar plate platform, eliminating the need for labor-intensive, multiple transfer and encapsulation steps to ensure the reproducible generation of cerebral organoids. We formed embryoid bodies (EBs) in an ultra-low attachment (ULA) 384-well plate and subsequently transferred them to the pillar plate containing Matrigel, using a straightforward sandwiching and inverting method. Each pillar on the pillar plate contains a single spheroid, and the success rate of spheroid transfer was in a range of 95 - 100%. Using this approach, we robustly generated cerebral organoids on the pillar plate and demonstrated an intra-batch coefficient of variation (CV) below 9 – 19% based on ATP-based cell viability and compound treatment. Notably, our spheroid transfer method in combination with the pillar plate allows miniaturized culture of cerebral organoids, alleviates the issue of organoid variability, and has potential to significantly enhance assay throughput by allowing in situ organoid assessment as compared to conventional organoid culture in 6-/24-well plates, petri dishes, and spinner flasks.

Identiferoai:union.ndltd.org:unt.edu/info:ark/67531/metadc2332637
Date05 1900
CreatorsAcharya, Prabha
ContributorsLee, Moo-Yeal, Yang, Yong, Yang, Adam, Chan, Clement T. Y., Wang, Xuexia
PublisherUniversity of North Texas
Source SetsUniversity of North Texas
LanguageEnglish
Detected LanguageEnglish
TypeThesis or Dissertation
FormatText
RightsPublic, Acharya, Prabha, Copyright, Copyright is held by the author, unless otherwise noted. All rights Reserved.

Page generated in 0.0024 seconds