Return to search

Análisis de la propagación del Caving y modelamiento mediante FlowSim BC

Memoria para optar al título de Ingeniero Civil de Minas / El éxito de una operación de Block/Panel Caving depende de las decisiones que se toman durante la planificación minera, durante la fase de ramp up se ponen a prueba los planes de extracción con desafíos asociados a mantener y gestionar la seguridad operacional, controlar la sismicidad, riesgos de air blast y estallidos de roca, todos los desafíos anteriores tienen en común el fenómeno de propagación de caving, cuya trayectoria de crecimiento define si el material disponible para ser extraído será dilución o mineral.
El estudio de la propagación de caving en este trabajo se dividió en tres etapas comenzando por el estado del arte y los antecedentes de los casos de estudio, luego el análisis de las variables operacionales que influyen en la manera de propagación del caving y finalmente la incorporación del cave back en FlowSim BC a través del mecanismo de Cave Shape el cual define la interfaz del cave back periodo a periodo.
Con respecto a los antecedentes de estudio se presentan los conceptos y fundamentos detrás del caving, identificando aquellas variables que son controlables a nivel operacional tal como la extracción y el pre-acondicionamiento (PA). Con respecto a los casos de estudio ambos corresponden a dos bloques adyacentes desfasados 194 m en cota, tienen en común ser yacimientos muy grandes y profundos llegando a alturas de columna extraíble de hasta 1000 m para el CASO 1 y una altura de columna de 750 m para el CASO 2, utilizando PA intensivo y PA con fracturamiento hidráulico (FH) respectivamente.
Una vez que la socavación inicial ha comenzado, la única variable operacional que controla la propagación del caving es la extracción. Se realizó un análisis comparando la altura de cave back (HCB) con la altura de extracción (HOD) en ambos casos de estudio. Como regla general para ambos casos se cumple que a mayor HCB la altura de extracción equivalente aumenta manteniendo la razón HCB : HOD = 8:1, lo que corresponde a una razón mayor a lo establecido de forma empírica por Codelco cuando existe aplicación de PA (HCB : HOD = 5 : 1), dicha razón se debe a que existen puntos de extracción en donde el caving propaga mucho más rápido alcanzando razones de HCB : HOD = 12:1, esto se explica por la presencia de estructuras y fallas dominantes en el CASO 1, y producto de la interacción entre cavidad adyacente explotada previamente para el CASO 2. Por otro lado, existen puntos de extracción ubicados en el entorno del área de mayor propagación en donde es factible estimar la altura del cave back como un factor de 4.5 veces la altura de extracción. Se completa el estudio con un análisis de extracción en términos de leyes y trazadores para ambos casos a fin de comprender el comportamiento a nivel de flujo gravitacional.
La última fase fue incorporar un nuevo mecanismo que represente el cave back en el simulador FlowSim BC, se simulan ambos casos de estudios y se observa una mejora en las estimaciones en términos de leyes y trazadores gracias al cave back. Se finaliza esta etapa mencionando las nuevas capacidades que se podrían implementar a FlowSim BC gracias a la incorporación del Cave Shape, tales como el cambio de porosidad en función de la fragmentación, control del volumen de air gap y cambios de la topografía, proponiendo los algoritmos que se debiesen seguir para el desarrollo futuro.

Identiferoai:union.ndltd.org:UCHILE/oai:repositorio.uchile.cl:2250/169999
Date January 2018
CreatorsGuzmán Cano, Diego Abdón
ContributorsAltamirano Cóndor, Álvaro, Castro Ruiz, Raúl, Valencia Vera, María Elena
PublisherUniversidad de Chile
Source SetsUniversidad de Chile
LanguageSpanish
Detected LanguageSpanish
TypeTesis
RightsAttribution-NonCommercial-NoDerivs 3.0 Chile, http://creativecommons.org/licenses/by-nc-nd/3.0/cl/

Page generated in 0.0108 seconds