Return to search

A Methodology to Develop a Decision Model Using a Large Categorical Database with Application to Identifying Critical Variables during a Transport-Related Hazardous Materials Release

An important problem in the use of large categorical databases is extracting information to make decisions, including identification of critical variables. Due to the complexity of a dataset containing many records, variables, and categories, a methodology for simplification and measurement of associations is needed to build the decision model. To this end, the proposed methodology uses existing methods for categorical exploratory analysis. Specifically, latent class analysis and loglinear modeling, which together constitute a three-step, non-simultaneous approach, were used to simplify the variables and measure their associations, respectively. This methodology has not been used to extract data-driven decision models from large categorical databases.
A case in point is a large categorical database at the DoT for hazardous materials releases during transportation. This dataset is important due to the risk from an unintentional release. However, due to the lack of a data-congruent decision model of a hazmat release, current decision making, including critical variable identification, is limited at the Office of Hazardous Materials within the DoT. This gap in modeling of a release is paralleled by a similar gap in the hazmat transportation literature. The literature has an operations research and quantitative risk assessment focus, in which the models consist of simple risk equations or more complex, theoretical equations. Thus, based on critical opportunities at the DoT and gaps in the literature, the proposed methodology was demonstrated using the hazmat release database. The methodology can be applied to other categorical databases for extracting decision models, such as those at the National Center for Health Statistics.
A key goal of the decision model, a Bayesian network, was identification of the most influential variables relative to two consequences or measures of risk in a hazmat release, dollar loss and release quantity. The most influential variables for dollar loss were found to be variables related to container failure, specifically the causing object and item-area of failure on the container. Similarly, for release quantity, the container failure variables were also most influential, specifically the contributing action and failure mode. In addition, potential changes in these variables for reducing consequences were identified.

Identiferoai:union.ndltd.org:PITT/oai:PITTETD:etd-03222006-220811
Date02 June 2006
CreatorsClark, Renee M
ContributorsMary E. Besterfield-Sacre, PhD, Richard D. Day, PhD, Harvey Wolfe, PhD, Jayant Rajgopal, PhD, Larry J. Shuman, PhD
PublisherUniversity of Pittsburgh
Source SetsUniversity of Pittsburgh
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.library.pitt.edu/ETD/available/etd-03222006-220811/
Rightsunrestricted, I hereby certify that, if appropriate, I have obtained and attached hereto a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to University of Pittsburgh or its agents the non-exclusive license to archive and make accessible, under the conditions specified below, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report.

Page generated in 0.0024 seconds