Return to search

RFID in Supply Chains

A critical factor in increasing the widespread adoption of Radio Frequency Identification (RFID) technology for different supply chain applications is the ability to achieve a high level of read accuracy. The read accuracy is dependent on the size of the region that receives sufficient power from the reader. While most current research considers the powering region of a reader to be determined only by its read range, in reality read accuracy can be complicated by such issues as polarizations and the relative orientations of reader antennas and tags. In particular, when tag positions are not fixed, the specific placement of reader antennas and their interaction with the polarization and the orientation of the tags can have a significant effect on the success of the interrogation processes. This research uses Friis equation for both the forward link and the backward link to explicitly consider orientations and polarizations while addressing the problem of optimizing the locations of a set of reader antennas at a scanning portal. The objective is to maximize the size of the powering region satisfying a particular read accuracy requirement. This research develops different methodologies and provides results for obtaining the best antenna locations to address different scenarios in supply chain applications. It addresses the case where items are static within a read portal, as well as when they might be moving on some type of material handling equipment. Various scenarios are considered for the tag orientations, including item-level applications where any orientation might be possible and case-level and pallet-level scenarios where the number of possible tag orientations might be limited.

Identiferoai:union.ndltd.org:PITT/oai:PITTETD:etd-01082009-112840
Date30 June 2011
CreatorsWang, Lin
ContributorsMarlin Mickle, Bryan Norman, Jayant Rajgopal, Larry Shuman
PublisherUniversity of Pittsburgh
Source SetsUniversity of Pittsburgh
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.library.pitt.edu/ETD/available/etd-01082009-112840/
Rightsrestricted, I hereby certify that, if appropriate, I have obtained and attached hereto a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to University of Pittsburgh or its agents the non-exclusive license to archive and make accessible, under the conditions specified below, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report.

Page generated in 0.0016 seconds