Material efficiency is a key solution to provide a reduction in the total environmental impact of global manufacturing, which contributes to avoid generating larger volumes of industrial waste, to reduce extracting and consuming ever more resources and to decrease energy demand and carbon emissions. However, the area of material efficiency in manufacturing has been under-researched and related knowledge is limited. The research objective of this thesis is to contribute to the existing body of knowledge regarding material efficiency in manufacturing - to increase understanding, describe the existing situation and develop support for improvement. This thesis focuses on value of process and residual materials in material efficiency: to increase homogenous quality of generated waste with higher segregation rate, decreasing the amount of material becoming waste and reduce total virgin raw material consumption without influencing the function and quality of a product or process. To achieve the objective, material efficiency strategies, existing state of material efficiency in manufacturing and barriers that avert higher material efficiency improvement have been investigated. The results are supported by four structured literature reviews and two [MW1] empirical multiple case studies at large global manufacturing companies in Sweden, mainly automotive. Empirical studies include observations, interviews, waste stream mapping, waste sorting analysis, environmental report reviews and walkthroughs in companies to determine the material efficiency and industrial waste management systems. The empirical results revealed that material efficiency improvement potential of further waste segregation to gain economic and environmental benefits is still high. Determining different waste segments and relative fractions along with calculating material efficiency performance measurements facilitate improvements in material efficiency. In addition to attempts for waste generation reduction, avoiding blending and correct segregation of different waste fractions is an essential step towards material efficiency. The next step is to improve the value of waste fractions i.e. having more specific cost-effective fractions. Waste Flow Mapping proves to be an effective practical tool to be utilized at manufacturing companies in order to check and explore the improvement opportunities. In addition, a number of barriers that hinder material efficiency was identified. The most influential material efficiency barriers are Budgetary, Information, Management and Employees. The majority of identified material efficiency barriers are internal, originate inside the company itself and are dependent upon the manufacturing companies’ characteristics. As a result, management and employees’ attitude, environmental knowledge and environmental motivation, as well as their internal communication and information sharing, and companies’ core value and vision are the enablers for material efficiency improvement. / MEMIMAN / INNOFACTURE - innovative manufacturing development
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:mdh-28004 |
Date | January 2015 |
Creators | Shahbazi, Sasha |
Publisher | Mälardalens högskola, Innovation och produktrealisering, Eskilstuna : Mälardalen University |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Licentiate thesis, comprehensive summary, info:eu-repo/semantics/masterThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | Mälardalen University Press Licentiate Theses, 1651-9256 ; 210 |
Page generated in 0.0023 seconds