Perceptually challenging driving environments pose a particular threat of motor vehicle crashes to elderly drivers. Augmented reality (AR) cueing is a promising technology to mitigate risk by directing a driver's attention to roadway hazards. The objective of this study was to evaluate the effectiveness of AR cues in improving driver safety in older drivers who are at increased risk for a crash due to age-related cognitive impairment.
Twenty elderly (Mean= 73 years, SD= 5), licensed drivers with a range of cognitive abilities measured by a speed of processing (SOP) composite participated in a 36-mile (1 hour) drive in an interactive, fixed-base driving simulator. Each participant received AR cues to potential roadside hazards in three of six, straight, 6-mile-long-rural roadway segments. AR cueing was evaluated using response time and response rate for detecting potentially hazardous events (e.g. pedestrian alongside road), detection accuracy for non-target objects (e.g. recreational sign), and ability to maintain a consistent distance behind a lead vehicle.
AR cueing aided the detection of pedestrians and warning signs, but not vehicles. Response times decreased for AR-cued warning signs. AR cues did not impair perception of non-target objects or the ability to maintain consistent distance behind a lead vehicle, including for drivers with lower SOP capacity.
AR cues show promise for improving older driver safety by increasing hazard detection likelihood without interfering with secondary task performance.
Identifer | oai:union.ndltd.org:uiowa.edu/oai:ir.uiowa.edu:etd-3529 |
Date | 01 December 2011 |
Creators | Schall, Mark Christopher, Jr. |
Contributors | Thomas, Geb W., Rizzo, Matthew |
Publisher | University of Iowa |
Source Sets | University of Iowa |
Language | English |
Detected Language | English |
Type | thesis |
Format | application/pdf |
Source | Theses and Dissertations |
Rights | Copyright 2011 Mark Christopher Schall |
Page generated in 0.0011 seconds