Return to search

Diretrizes para aplicação de inferência Bayesiana aproximada para modelos lineares generalizados e dados georreferenciados / Approximate Bayesian inference guidelines for generalized linear models and georeferenced data

Neste trabalho, exploramos e propusemos diretrizes para a análise de dados utilizando o método Integrated Nested Laplace Approxímation - INLA para os modelos lineares generalizados (MLG\'s) e modelos baseados em dados georreferenciados. No caso dos MLG\'s, verificou-se o impacto do método de aproximação utilizado para aproximar a distribuição a posteriori conjunta. Nos dados georreferenciados, avaliou-se e propôs-se diretrizes para construção das malhas, passo imprescindível para obtenção de resultados mais precisos. Em ambos os casos, foram realizados estudos de simulação. Para selecionar os melhores modelos, foram calculadas medidas de concordância entre as observações e os valores ajustados pelos modelos, por exemplo, erro quadrático médio e taxa de cobertura. / In this work, we explore and propose guidelines for data analysis using the Integrated Nested Laplace Approximation (INLA) method for generalized linear models (GLM) and models based on georeferenced data. In the case of GLMs, the impact of the approximation method used to approximate the a posteriori joint distribution was verified. In the georeferenced data, we evaluated and proposed guidelines for the construction of the meshes, an essential step for obtaining more precise results. In both cases, simulation studies were performed. To select the best models, agreement measures were calculated between observations and models, for example, mean square error and coverage rate.

Identiferoai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-03012019-175609
Date15 August 2018
CreatorsFrade, Djair Durand Ramalho
ContributorsPiedade, Sonia Maria de Stefano
PublisherBiblioteca Digitais de Teses e Dissertações da USP
Source SetsUniversidade de São Paulo
LanguagePortuguese
Detected LanguagePortuguese
TypeTese de Doutorado
Formatapplication/pdf
RightsLiberar o conteúdo para acesso público.

Page generated in 0.002 seconds