Resuspended floor dust constitutes up to sixty percent of the total particulate matter in indoor air. This fraction may also include virus-laden particles that settle on the floor after being emitted by an infected individual. This research focuses on predicting the concentration of influenza A viruses in resuspended dust, generated by people walking in a room, at various heights above the floor. Using a sonic anemometer, we measured the velocity field from floor to ceiling at 10-cm intervals to estimate the magnitude of turbulence generated by walking. The resulting eddy diffusion coefficients varied between 0.06 m2 s-1 and 0.20 m2 s-1 and were maximal at ~0.75-1 m above the floor, approximately the height of the swinging hand. We used these coefficients in an atmospheric transport model to predict virus concentrations as a function of the carrier particle size and height in the room. Results indicate that the concentration of resuspended viruses at 1 m above the floor is about seven times the concentration at 2 m. Thus, shorter people may be exposed to higher concentrations of pathogens in resuspended dust indoors. This study illuminates the possibility that particle resuspension could be a mode of disease transmission. It also emphasizes the importance of considering resuspension of particulate matter when designing ventilation systems and flooring in hospitals and residences. / Master of Science
Identifer | oai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/49662 |
Date | 21 July 2014 |
Creators | Khare, Peeyush |
Contributors | Civil and Environmental Engineering, Marr, Linsey C., Eubank, Stephen G., Battaglia, Francine |
Publisher | Virginia Tech |
Source Sets | Virginia Tech Theses and Dissertation |
Detected Language | English |
Type | Thesis |
Format | ETD, application/pdf |
Rights | In Copyright, http://rightsstatements.org/vocab/InC/1.0/ |
Page generated in 0.0019 seconds