Return to search

Data-Driven System for Perioperative Acuity Prediction

The widely used American Society of Anesthesiologistâsâ (ASA) Physical Status classification is subjective and requires time-consuming clinician assessment. Machine learning can be used to develop a system that predicts the ASA score a patient should be given based on routinely available preoperative data. The problem of ASA prediction is reframed into a binary classification problem for predicting between ASA 1/2 versus ASA 3/4/5. Retrospective ASA scores from the Vanderbilt Perioperative Data Warehouse are used as labels, allowing the use of supervised machine learning techniques. Routinely available preoperative data is used to select features and train four different models: logistic regression, k-nearest neighbors, random forests, and neural networks. Of the selected features, ICD9 codes were tested by incorporating temporality and hierarchy. The area under the curve (AUC) of the receiver operating characteristic (ROC) of each model on a holdout set is compared. The Cohenâs Kappa is calculated for the model versus the raw data and the model versus our anesthesiologist.
Results: The best performing model was the random forest, achieving an AUC of 0.884. This model results in a 0.63 Cohenâs Kappa versus the raw data, and a 0.54 Kappa against our anesthesiologist, which is comparable to unweighted Kappa values found in literature. The results suggest that a machine learning model can predict ASA score with high AUC, and achieve agreement similar to an anesthesiologist. This demonstrates the feasibility of using this model as a standardized ASA scorer.

Identiferoai:union.ndltd.org:VANDERBILT/oai:VANDERBILTETD:etd-11202016-185748
Date21 November 2016
CreatorsZhang, Linda
ContributorsDaniel Fabbri, Thomas A. Lasko, Jonathan P. Wanderer
PublisherVANDERBILT
Source SetsVanderbilt University Theses
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.library.vanderbilt.edu/available/etd-11202016-185748/
Rightsrestrictone, I hereby certify that, if appropriate, I have obtained and attached hereto a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to Vanderbilt University or its agents the non-exclusive license to archive and make accessible, under the conditions specified below, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report.

Page generated in 0.0019 seconds