The World Wide Web (WWW) now is widely used as a universal medium for information exchange. Semantic interoperability among different information systems in the WWW is limited due to information heterogeneity, and the non semantic nature of HTML and URLs. Ontologies have been suggested as a way to solve the problem of information heterogeneity by providing formal, explicit definitions of data and reasoning ability over related concepts. Given that no universal ontology exists for the WWW, work has focused on finding semantic correspondences between similar elements of different ontologies, i.e., ontology mapping. Ontology mapping can be done either by hand or using automated tools. Manual mapping becomes impractical as the size and complexity of ontologies increases. Full or semi-automated mapping approaches have been examined by several research studies. Previous full or semi-automated mapping approaches include analyzing linguistic information of elements in ontologies, treating ontologies as structural graphs, applying heuristic rules and machine learning techniques, and using probabilistic and reasoning methods etc. In this paper, two generic ontology mapping approaches are proposed. One is the PRIOR+ approach, which utilizes both information retrieval and artificial intelligence techniques in the context of ontology mapping. The other is the non-instance learning based approach, which experimentally explores machine learning algorithms to solve ontology mapping problem without requesting any instance. The results of the PRIOR+ on different tests at OAEI ontology matching campaign 2007 are encouraging. The non-instance learning based approach has shown potential for solving ontology mapping problem on OAEI benchmark tests.
Identifer | oai:union.ndltd.org:PITT/oai:PITTETD:etd-03192008-024432 |
Date | 03 June 2008 |
Creators | Mao, Ming |
Contributors | Daqing He, Peter Brusilovsky, Michael Spring, Bambang Parmanto, Paul Munro |
Publisher | University of Pittsburgh |
Source Sets | University of Pittsburgh |
Language | English |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | http://etd.library.pitt.edu/ETD/available/etd-03192008-024432/ |
Rights | unrestricted, I hereby certify that, if appropriate, I have obtained and attached hereto a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to University of Pittsburgh or its agents the non-exclusive license to archive and make accessible, under the conditions specified below, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report. |
Page generated in 0.0025 seconds