The dissertation starts with an extensive literature survey on the current issues in content-based image retrieval (CBIR) research, the state-of-the-art theories, methodologies, and implementations, covering topics such as general information retrieval theories, imaging, image feature identification and extraction, feature indexing and multimedia database search, user-system interaction, relevance feedback, and performance evaluation. A general CBIR framework has been proposed with three layers: image document space, feature space, and concept space. The framework emphasizes that while the projection from the image document space to the feature space is algorithmic and unrestricted, the connection between the feature space and the concept space is based on statistics instead of semantics. The scheme favors image features that do not rely on excessive assumptions about image content
As an attempt to design a new CBIR methodology following the above framework, k-means clustering color quantization is applied to pathology microscopic images, followed by code run-length probability distribution feature extraction. Kulback-Liebler divergence is used as distance measure for feature comparison. For content-based retrieval, the distance between two images is defined as a function of all individual features. The process is highly automated and the system is capable of working effectively across different tissues without human interference. Possible improvements and future directions have been discussed.
Identifer | oai:union.ndltd.org:PITT/oai:PITTETD:etd-12162005-124025 |
Date | 31 January 2006 |
Creators | Zheng, Lei |
Contributors | John Gilbertson, Hassan Karimi, Paul Munro, Michael Becich, David Foran |
Publisher | University of Pittsburgh |
Source Sets | University of Pittsburgh |
Language | English |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | http://etd.library.pitt.edu/ETD/available/etd-12162005-124025/ |
Rights | unrestricted, I hereby certify that, if appropriate, I have obtained and attached hereto a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to University of Pittsburgh or its agents the non-exclusive license to archive and make accessible, under the conditions specified below, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report. |
Page generated in 0.0015 seconds