Energy-efficiency and performance have been the driving forces of system architectures and designers in the last century. Given the diversity of workloads and the significant performance and power improvements when running workloads on customized processing elements, system vendors are drifting towards new system architectures (e.g., FAM or HMM). Such architectures are being developed with the purpose of improving the system's performance, allow easier data sharing, and reduce the overall power consumption. Additionally, current computing systems suffer from a very wide attack surface, mainly due to the fact that such systems comprise of tens to hundreds of sub-systems that could be manufactured by different vendors. Vulnerabilities, backdoors, and potentially hardware trojans injected anywhere in the system form a serious risk for confidentiality and integrity of data in computing systems. Thus, adding security features is becoming an essential requirement in modern systems. In the purpose of achieving these performance improvements and power consumption reduction, the emerging NVMs stand as a very appealing option to be the main memory building block or a part of it. However, integrating the NVMs in the memory system can lead to several challenges. First, if the NVM is used as the sole memory, incorporating security measures can exacerbate the NVM's write endurance and reduce its lifetime. Second, integrating the NVM as a part of the main memory as in DRAM-NVM hybrid memory systems can lead to higher performance overheads of persistent applications. Third, Integrating the NVM as a memory extension as in fabric-attached memory architecture can cause a high contention over the security metadata cache. Additionally, in FAM architectures, the memory sharing can lead to security metadata coherence problems. In this dissertation, we study these problems and propose novel solutions to enable secure and efficient integration of NVMs in the emerging architectures.
Identifer | oai:union.ndltd.org:ucf.edu/oai:stars.library.ucf.edu:etd2020-1796 |
Date | 01 January 2020 |
Creators | Alwadi, Mazen |
Publisher | STARS |
Source Sets | University of Central Florida |
Language | English |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Electronic Theses and Dissertations, 2020- |
Page generated in 0.0017 seconds