Return to search

Robotic Search Planning In Large Environments with Limited Computational Resources and Unreliable Communications

This work is inspired by robotic search applications where a robot or team of robots is equipped with sensors and tasked to autonomously acquire as much information as possible from a region of interest. To accomplish this task, robots must plan paths through the region of interest that maximize the effectiveness of the sensors they carry. Receding horizon path planning is a popular approach to addressing the computationally expensive task of planning long paths because it allows robotic agents with limited computational resources to iteratively construct a long path by solving for an optimal short path, traversing a portion of the short path, and repeating the process until a receding horizon path of the desired length has been constructed. However, receding horizon paths do not retain the optimality properties of the short paths from which they are constructed and may perform quite poorly in the context of achieving the robotic search objective. The primary contributions of this work address the worst-case performance of receding horizon paths by developing methods of using terminal rewards in the construction of receding horizon paths. We prove that the proposed methods of constructing receding horizon paths provide theoretical worst-case performance guarantees. Our result can be interpreted as ensuring that the receding horizon path performs no worse in expectation than a given sub-optimal search path. This result is especially practical for subsea applications where, due to use of side-scan sonar in search applications, search paths typically consist of parallel straight lines. Thus for subsea search applications, our approach ensures that expected performance is no worse than the usual subsea search path, and it might be much better.
The methods proposed in this work provide desirable lower-bound guarantees for a single robot as well as teams of robots. Significantly, we demonstrate that existing planning algorithms may be easily adapted to use our proposed methods. We present our theoretical guarantees in the context of subsea search applications and demonstrate the utility of our proposed methods through simulation experiments and field trials using real autonomous underwater vehicles (AUVs). We show that our worst-case guarantees may be achieved despite non-idealities such as sub-optimal short-paths used to construct the longer receding horizon path and unreliable communication in multi-agent planning. In addition to theoretical guarantees, An important contribution of this work is to describe specific implementation solutions needed to integrate and implement these ideas for real-time operation on AUVs. / Doctor of Philosophy / This work is inspired by robotic search applications where a robot or team of robots is equipped with sensors and tasked to autonomously acquire as much information as possible from a region of interest. To accomplish this task, robots must plan paths through the region of interest that maximize the effectiveness of the sensors they carry. Receding horizon path planning is a popular approach to addressing the computationally expensive task of planning long paths because it allows robotic agents with limited computational resources to iteratively construct a long path by solving for an optimal short path, traversing a portion of the short path, and repeating the process until a receding horizon path of the desired length has been constructed. However, receding horizon paths do not retain the optimality properties of the short paths from which they are constructed and may perform quite poorly in the context of achieving the robotic search objective. The primary contributions of this work address the worst-case performance of receding horizon paths by developing methods of using terminal rewards in the construction of receding horizon paths. The methods proposed in this work provide desirable lower-bound guarantees for a single robot as well as teams of robots. We present our theoretical guarantees in the context of subsea search applications and demonstrate the utility of our proposed methods through simulation experiments and field trials using real autonomous underwater vehicles (AUVs). In addition to theoretical guarantees, An important contribution of this work is to describe specific implementation solutions needed to integrate and implement these ideas for real-time operation on AUVs.

Identiferoai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/113958
Date24 February 2023
CreatorsBiggs, Benjamin Adams
ContributorsElectrical Engineering, Stilwell, Daniel J., Williams, Ryan K., Doan, Thinh Thanh, McMahon, James, Woolsey, Craig A.
PublisherVirginia Tech
Source SetsVirginia Tech Theses and Dissertation
LanguageEnglish
Detected LanguageEnglish
TypeDissertation
FormatETD, application/pdf
RightsCreative Commons Attribution 4.0 International, http://creativecommons.org/licenses/by/4.0/

Page generated in 0.0018 seconds