Return to search

Energy-efficient, Large-scale Ultra-wideband Communication and Localization

Among the low-power wireless technologies that have emerged in recent years, ultra-wideband (UWB) has successfully established itself as the reference for accurate ranging and localization, both outdoors and indoors. Due to its unprecedented performance, paired with relatively low energy consumption, UWB is going to play a central role in the next wave of location-based applications. As the trend of integration in smartphones continues, UWB is also expected to reach ordinary users, revolutionizing our lives the same way GPS and similar technologies have done. But the impact of UWB may not be limited to ranging and localization. Because of its considerable data rate, and its robustness to obstacles and interference, UWB communication may hold untapped potential for sensing and control applications. Nevertheless, several research questions still need to be answered to assess whether UWB can be adopted widely in the communication and localization landscapes. On one hand, the rapid evolution of UWB radios and the release of ever more efficient chips is a clear indication of the growing market for this technology. However, for it to become pervasive, full-fledged communication and localization systems must be developed and evaluated, tackling the shortcomings affecting current prototypes. UWB systems are typically single-hop networks designed for small areas, making them impractical for large-scale coverage. This limitation is found in communication and localization systems alike. Specifically for communication systems, energy-efficient multi-hop protocols are hitherto unexplored. As for localization systems, they rely on mains-powered anchors to circumvent the issue of energy consumption, in addition to only supporting small areas. Very few options are available for light, easy to deploy infrastructures using battery-powered anchors. Nonetheless, large-scale systems are required in common settings like industrial facilities and agricultural fields, but also office spaces and museums. The general goal of enabling UWB in spaces like these entails a number of issues. Large multi-hop infrastructures exacerbate the known limitations of small, single-hop, networks; notably, reliability and latency requirements clash with the need to reduce energy consumption. Finally, when device mobility is a factor, continuity of operations across the covered area is a challenge in itself. In this thesis, we design energy-efficient UWB systems for large-scale areas, supporting device mobility across multi-hop infrastructures. As our opening contribution, we study the unique interference rejection properties of the radio to inform our design. This analysis yields a number of findings on the impact of interference in communication and distance estimation, that are directly usable by developers to improve UWB solutions.
These findings also suggest that concurrent transmissions in the same frequency channel are a practical option in UWB. While the overlapping of frames is typically avoided to prevent collisions, concurrent transmissions have counter-intuitively been used to provide highly reliable communication primitives for a variety of traffic patterns in narrowband radios. In our first effort to use concurrent transmissions in a full system, we introduce the UWB version of Glossy, a renowned protocol for efficient network-wide synchronization and data dissemination. Inspired by the success of concurrency-based protocols in narrowband, we then apply the same principles to define a novel data collection protocol, Weaver. Instead of relying on independent Glossy floods like state-of-the-art systems, we weave multiple data flows together to make our collection engine faster, more reliable and more energy-efficient. With Glossy and Weaver supporting the communication aspect in large-scale networks, we then propose techniques for large-scale localization systems. We introduce TALLA, a TDoA solution for continuous position estimation based on wireless synchronization. We evaluate TALLA in an UWB testbed and in simulations, for which we replicate accurately the behavior of the clocks in our real-world platforms. We then offer a glimpse of what TALLA can be employed for, deploying an infrastructure in a science museum to track visitors. The collected movement traces allow us to analyze fine-grained stop-move mobility patterns and infer the sequence of visited exhibits, which is only possible because of the high spatio-temporal granularity offered by TALLA. Finally, with SONAR, we tackle the issue of large-scale ranging and localization when the infrastructure cannot be mains-powered. By blending synchronization and scheduling operations into neighbor discovery and ranging, we drastically reduce energy consumption and ensure years-long system lifetime. Overall, this thesis enhances UWB applicability in scenarios that were previously precluded to the technology, by providing the missing communication and localization support for large areas and battery-powered devices. Throughout the thesis, we follow an experiment-driven approach to validate our protocol models and simulations. Based on the evidence collected during this research endeavor, we develop full systems that operate in a large testbed at our premises, showing that our solutions are immediately applicable in real settings.

Identiferoai:union.ndltd.org:unitn.it/oai:iris.unitn.it:11572/349081
Date08 July 2022
CreatorsVecchia, Davide
ContributorsVecchia, Davide, Picco, Gian Pietro
PublisherUniversità degli studi di Trento, place:TRENTO
Source SetsUniversità di Trento
LanguageEnglish
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/doctoralThesis
Rightsinfo:eu-repo/semantics/closedAccess
Relationfirstpage:1, lastpage:165, numberofpages:165

Page generated in 0.0017 seconds