In mobile cloud computing (MCC), rich mobile application data is processed at the cloud infrastructure by reliving resource limited mobile devices from computationally complex tasks. However, due to the ubiquitous and mobility nature, providing time critical rich applications over remote cloud infrastructure is a challenging task for mobile application service providers. Therefore, according to the literature, close proximity placement of cloud services has been identified as a way to achieve lower end-to-end access delay and thereby provide a higher quality of experience (QoE) for rich mobile application users. However, providing a higher Quality of Service (QoS) with mobility is still a challenge within close proximity clouds. Access delay to a closely placed cloud tends to be increased over time when users move away from the cloud. However, reactive resource relocation mechanism proposed in literature does not provide a comprehensive mechanism to guarantee the QoS and as well as to minimize service provisioning cost for mobile cloud service providers.
As a result, using the benefits of SDN and the data plane programmability with logically centralized controllers, a resource allocation framework was
proposed for IaaS mobile clouds with regional datacenters. The user mobility problem was analyzed within SDN-enabled wireless networks and addressed the possible service level agreement violations that could occur with inter-regional mobility. The proposed framework is composed of an optimization algorithm to provide seamless cloud service during user mobility. Further a service provisioning cost minimization criteria was considered during an event of resource allocation and inter-regional user mobility.
Identifer | oai:union.ndltd.org:uottawa.ca/oai:ruor.uottawa.ca:10393/35117 |
Date | January 2016 |
Creators | Ekanayake Mudiyanselage, Wijaya Dheeshakthi |
Contributors | Karmouch, Ahmed |
Publisher | Université d'Ottawa / University of Ottawa |
Source Sets | Université d’Ottawa |
Language | English |
Detected Language | English |
Type | Thesis |
Page generated in 0.0024 seconds