Return to search

Realistic micromechanical modeling and simulation of two-phase heterogeneous materials

This dissertation research focuses on micromechanical modeling and simulations of two-phase heterogeneous materials exhibiting anisotropic and non-uniform microstructures with long-range spatial correlations. Completed work involves development of methodologies for realistic micromechanical analyses of materials using a combination of stereological techniques, two- and three-dimensional digital image processing, and finite element based modeling tools. The methodologies are developed via its applications to two technologically important material systems, namely, discontinuously reinforced aluminum composites containing silicon carbide particles as reinforcement, and boron modified titanium alloys containing in situ formed titanium boride whiskers. Microstructural attributes such as the shape, size, volume fraction, and spatial distribution of the reinforcement phase in these materials were incorporated in the models without any simplifying assumptions. Instrumented indentation was used to determine the constitutive properties of individual microstructural phases. Micromechanical analyses were performed using realistic 2D and 3D models and the results were compared with experimental data. Results indicated that 2D models fail to capture the deformation behavior of these materials and 3D analyses are required for realistic simulations. The effect of clustering of silicon carbide particles and associated porosity on the mechanical response of discontinuously reinforced aluminum composites was investigated using 3D models. Parametric studies were carried out using computer simulated microstructures incorporating realistic microstructural attributes. The intrinsic merit of this research is the development and integration of the required enabling techniques and methodologies for representation, modeling, and simulations of complex geometry of microstructures in two- and three-dimensional space facilitating better understanding of the effects of microstructural geometry on the mechanical behavior of materials.

Identiferoai:union.ndltd.org:GATECH/oai:smartech.gatech.edu:1853/24607
Date19 May 2008
CreatorsSreeranganathan, Arun
PublisherGeorgia Institute of Technology
Source SetsGeorgia Tech Electronic Thesis and Dissertation Archive
Detected LanguageEnglish
TypeDissertation

Page generated in 0.0021 seconds