In this study, all possible mono, di and trinitro-substituted triazine compounds as potential candidates for high energy density materials (HEDMs) have been investigated by using quantum chemical treatment. Computational chemistry is a valuable tool for estimating the potential candidates for high energy density materials. Geometric features and electronic structures of these nitro-substituted triazines have been systematically studied using ab initio and density functional theory (DFT, B3LYP) at the level of 6-31G(d,p), 6-31+G(d,p), 6-311G(d,p), 6-311+G(d,p), cc-pVDZ. Detonation performances were evaluated by the Kamlet-Jacobs equations based on the calculated densities and heats of formation. It is found that 2G derivative with the predicted densities of 1.9 g/cm3, detonation velocities of 9.43 km/s, and detonation pressures of 40.68 GPa may be novel potential candidates of high energy density materials (HEDMs). Moreover, thermal stabilities were investigated by calculating bond dissociation energies (BDE) at B3LYP/6-311G(d,p) level. Detailed molecular orbital (MO) investigation have been performed on these potential HEDMs.
Identifer | oai:union.ndltd.org:METU/oai:etd.lib.metu.edu.tr:http://etd.lib.metu.edu.tr/upload/12609362/index.pdf |
Date | 01 February 2008 |
Creators | Camur, Yakup |
Contributors | Turrker, Lemi |
Publisher | METU |
Source Sets | Middle East Technical Univ. |
Language | English |
Detected Language | English |
Type | M.S. Thesis |
Format | text/pdf |
Rights | To liberate the content for public access |
Page generated in 0.0012 seconds