The following paper presents a one-dimensional numerical model for simulating transient thermohydraulic pipe flow based on the Method of Characteristics. In addition to mass and momentum conservation, the proposed scheme also guarantees compliance with the laws of thermodynamics by solving the energy equation. The model covers transient changes in fluid properties due to pressure changes, heat transfer and dissipation. The presented methodology also allows the computation of the transient temperature distribution in the pipe wall through an additional ordinary finite difference scheme. The numerical procedure is implemented in the commercial simulation software DSHplus. The capability of the code is examined by comparing the simulation results with theoretical solutions and experimental data.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:29331 |
Date | January 2016 |
Creators | Pasquini, Enrico, Baum, Heiko, van Bebber, David, Pendovski, Denis |
Contributors | Dresdner Verein zur Förderung der Fluidtechnik e. V. |
Publisher | Technische Universität Dresden |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | English |
Detected Language | English |
Type | doc-type:conferenceObject, info:eu-repo/semantics/conferenceObject, doc-type:Text |
Source | 10th International Fluid Power Conference (10. IFK) March 8 - 10, 2016, Vol. 1, pp. 519-532 |
Rights | info:eu-repo/semantics/openAccess |
Relation | urn:nbn:de:bsz:14-qucosa-196933, qucosa:29237 |
Page generated in 0.002 seconds