Return to search

Energy-efficient clock generation for communication and computing systems using injection locking

The design of high-performance, high-speed clock generation and distribution becomes challenging in terms of phase noise, jitter and power consumption, due to the fast development of communication and computing systems. Injection locking is a promising clocking technique since it can significantly improve the energy efficiency, suppress the phase noise of the ring oscillator, enable a fast startup and conveniently generate multiple time-interleaved phases.
A quasi-linear model of injection-locked ring oscillator (ILRO) is utilized to mathematically formulate the frequency and time domain characteristics of the system, as well as the phase noise shaping and jitter tracking behavior. The settling behavior of ILRO is also exploited and shows a strong dependence on the locking range and the initial phase difference of the injected and the resultant oscillation signals.
A forwarded-clock synchronization based on injection locking is designed for a 10 Gb/s photonic interconnect according to the specific features of optical links. A single clock recovery can be used for all the four channels, resulting in a large amount of power and area saving. The applications of sub-harmonic and super-harmonic injection locking in wireless communications for frequency multiplying and division are also discussed. / Graduation date: 2013 / Access restricted to the OSU Community at author's request from Oct. 1, 2012 - Oct. 1, 2014

Identiferoai:union.ndltd.org:ORGSU/oai:ir.library.oregonstate.edu:1957/33929
Date01 October 2014
CreatorsMa, Chao
ContributorsChiang, Patrick Y.
Source SetsOregon State University
Languageen_US
Detected LanguageEnglish
TypeThesis/Dissertation

Page generated in 0.0015 seconds