The goal of this work was to prove the fact, that definable closure of any subclass of cotorsion modules closed under direct sums consists of $\Sigma$-cotorsion modules. The only known proof uses substantially the calculus of derived category, in this work we tried to prove the same, but only by means of a given category of all right $R$-modules and set-theoretic properties of partial orders indexing direct systems of $R$-modules. The main results of this work are proved under additional assumptions on the ring $R$, in particular $\vert R\vert\leq\aleph_{\omega}$ or $\text{dim}(R)<\aleph_{\omega}$. Attempts to give s proof in the same general situation, where the fact is known to hold, was not successful. Powered by TCPDF (www.tcpdf.org)
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:267658 |
Date | January 2017 |
Creators | Dohnal, Garik |
Contributors | Šaroch, Jan, Šťovíček, Jan |
Source Sets | Czech ETDs |
Language | Czech |
Detected Language | English |
Type | info:eu-repo/semantics/masterThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0042 seconds