Return to search

Applications of organ culture of the mouse inner ear

The embryonic mouse inner ear was used as a model with which to study ototoxicity and tissue interactions. The inner ear anlage can be explanted and cultured in vitro from about the 12th gestational day (gd), and will differentiate parallel with the inner ear developing in vivo until a time corresponding to birth (21st gd). During this period the ovoid sac develops into the labyrinth. In the present thesis work, otic anlagen from gd 12, 13, 13.5, 15 and 16 were used. As a rule the explants were kept in culture until a time point equivalent to the 21st gd. Analyses using freeze-fracture technique and transmission electron microscopy showed that in cultured 13th gd otocysts the development of junctional complexes followed the same principal pattern as in vivo. Tight junctions develop into many strands lying parallel to the apical surface of all epithelial cells. Uncoupling of the hair cells occurs with loss of gap junctions. Some tight junctions had an aberrant appearence, with in part very thick strands and strands running at right angles to the apical surface. All aminoglycosides are potentially ototoxic. In the inner ear, outer hair cells of the organ of Corti and vestibular type I hair cells are affected by these antibiotics. The access route to the hair cells and the sites and mechanisms of action of aminoglycosides are not precisely defined. The uptake of tritiated tobramycin in 16th gd inner ears was studied. An initial rapid uptake of the drug, within 10 min, was followed by a slower accumulation, reaching a steady state after 60 min. Most of the tobramycin was bound reversibly, at least after a short period of incubation (2 h). The irreversibly bound fraction was of the same magnitude as the uptake within 10 min. Uptake took place against a concentration gradient. The otocyst can differentiate even without the statoacoustic ganglion. The interaction of the sensory epithelium with the ganglion was investigated by explanting the statoacoustic ganglion without target tissue. Twenty-five percent of the ganglions survived and had outgrowth of neurites but there was no differentiation into either the cochlear or vestibular type of neuron cells. Exposure of cultured otocysts (13 or 13.5 gd) to l-azetidine-2-carboxylic acid, a 1-proline analog that disrupts formation of collagen, resulted in retarded morphogenesis of the labyrinth and a dose- dependent derangement of the basal lamina. The expression of intermediate filaments (IFs) was analysed using monoclonal antibodies. The same IF pattem was found in cultured inner ears as in vivo. Explants were taken on 13th, 15th or 16th gd. Exposure to gentamicin, ethacrynic acid or cisplatin did not alter the IF composition. Cytokeratins (CKs) 8 and 18 were identified in all inner ear epithelia. In addition CKs 7 and 19 were visualized in the epithelia involved in maintaining endolymph homeostasis. The ganglion cells showed coexpression of CK, vimentin and neurofilaments. The elemental composition of the endolymph compartment of 16th gd inner ears cultured for 5 days was studied using energy-dispersive X-ray microanalysis. Na to K ratios characteristic of endolymph were found. / <p>S. 1-34: sammanfattning, s. 37-88: Härtill 6 uppsatser</p> / digitalisering@umu

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:umu-99333
Date January 1991
CreatorsBerggren, Diana
PublisherUmeå universitet, Öron- näs- och halssjukdomar, Umeå universitet, Kirurgi, Umeå : Umeå universitet
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeDoctoral thesis, comprehensive summary, info:eu-repo/semantics/doctoralThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationUmeå University medical dissertations, 0346-6612 ; 301

Page generated in 0.0022 seconds