Return to search

The three-dimensional (3D) organization of telomeres during cellular transformation

Statement of Problem
Telomere dynamics in the three-dimensional (3D) space of the mammalian nucleus plays an important role in the maintenance of genomic stability. However, the telomere distribution in 3D nuclear space of normal and tumor cells was unknown when the study was initiated.
Methods
Telomere fluorescence in situ hybridization (FISH) and 3D molecular imaging, deconvolution, and analysis were used to investigate telomere organization in normal, immortalized and tumor cells from mouse and human cell lines, and primary tissues.
Results
Telomeres are organized in a non-overlapping manner and in a cell-cycle dependant fashion in normal cells. In the late G2 phase of cell cycle, telomeres are assembled into a flattened sphere that is termed the telomeric disk In contrast, the telomeric disk is disrupted in the tumor cells. Moreover, telomeric aggregates (TAs) are found in tumor cells. Conditional c-Myc over-expression induces telomeric aggregation leading to the onset of breakage-bridge-fusion cycles and subsequent chromosomal abnormality.
Conclusions
Telomeres are distributed in a nonrandom and dynamic fashion in the 3D space of a normal cell. Telomeric aggregates are present in cells with genomic instability such as tumor cells and cells with deregulation of c-Myc. Consequently, TA can be a useful biomarker for research in cancer and other disease processes.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:MWU.1993/4228
Date22 September 2010
CreatorsChuang, Tony Chih-Yuan
ContributorsMai, Sabine (Physiology), Kerr, Paul (Otolaryngology Head and Neck Surgery) Davie, James (Physiology) Kroeger, Edwin (Physiology) Shiu, Robert (Physiology)
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
Languageen_US
Detected LanguageEnglish

Page generated in 0.0014 seconds